首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   27篇
  国内免费   46篇
  693篇
  2023年   11篇
  2022年   1篇
  2021年   4篇
  2020年   11篇
  2019年   5篇
  2018年   7篇
  2017年   18篇
  2016年   23篇
  2015年   26篇
  2014年   14篇
  2013年   27篇
  2012年   14篇
  2011年   32篇
  2010年   8篇
  2009年   49篇
  2008年   58篇
  2007年   61篇
  2006年   34篇
  2005年   37篇
  2004年   45篇
  2003年   40篇
  2002年   21篇
  2001年   9篇
  2000年   19篇
  1999年   8篇
  1998年   9篇
  1997年   11篇
  1996年   13篇
  1995年   8篇
  1994年   12篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   10篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1958年   1篇
排序方式: 共有693条查询结果,搜索用时 0 毫秒
1.
Bioturbation by benthic infauna has important implications for the fate of contaminants as well as for changes to the sediment structure, chemistry and transport characteristics. There is an extensive literature dealing with the influence of sedimentary variables on the structure and function of infaunal marine and estuarine organisms but less is known of the converse, the influence of biota on sedimentary structure. Although some work has been carried out regarding spatial and temporal patterns of bioturbation, little attention has been given to the effects of pollution. The paper gives a framework of animal sediment relationships in an intertidal environment and discusses the general role of macrofauna in structuring and modifying sedimentary features. A brief outline of the various techniques used for quantifying the degree of bioturbation is given and some of these techniques have then been used to demonstrate the effect of a petrochemical discharge on the bioturbation potential of intertidal communities in the Humber estuary, eastern England. These studies indicate an increase in bioturbation with increasing distance from the source of pollution, not only because of differences in abundance, animal size and depth of activity but also because of the difference in species composition between the communities. As a means of interpreting the responses, the species present have been broadly classified in terms of their feeding strategy and sediment modification potential. The paper concludes by discussing the potential impact, in terms of effect on sediment transport, of selectively removing the different guilds (by pollution). Received: 8 February 1999 / Received in revised form: 10 May 1999 / Accepted: 14 May 1999  相似文献   
2.
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.  相似文献   
3.
The concentration and chemical fractionation of globally alarming six heavy metals (Cr, Ni, Cu, As, Cd and Pb) were measured in surface water and sediment of an urban river in Bangladesh. The decreasing trend of metals were observed in water as Cr > Cu > As > Ni > Pb > Cd and in sediment as Cr > Ni > Cu > Pb > As > Cd. The level of studied metals exceeded the safe limits of drinking water, indicated that water from this river is not safe for drinking and/or cooking purposes. However, the investigated metals showed low mobility except for Cd and Pb which could pose a severe threat to the aquatic environment. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediment samples were moderately to heavily contaminated by Cr, As, Cd and Pb. The pollution load index (PLI) values were above one (>1) indicates progressive deterioration of the sediment quality. The extent of pollution by heavy metals in the river Korotoa implies that the condition is much frightening to the biota and inhabitants in the vicinity of the river as well.  相似文献   
4.
The history of how aspects of biology, geology and chemistry came together over the past three centuries to form a separate discipline known as biogeochemistry is described under four major headings: metabolic aspects, geochemical aspects, biogeochemical cycles, and the origin of life. A brief chronology of major conceptual advances is also presented.  相似文献   
5.
At Big Run Bog, aSphagnum-dominated peatland in the unglaciated Appalachian Plateau of West Virginia, significant spatial variation in the physical and chemical properties of the peat and in surface and subsurface (30 cm deep) water chemistry was characterized. The top 40 cm of organic peat at Big Run Bog had average values for bulk density of 0.09 g · cm–3, organic matter concentration of 77%, and volumetric water content of 88%. Changes in physical and chemical properties within the peat column as a function of depth contributed to different patterns of seasonal variation in the chemistry of surface and subsurface waters. Seasonal variation in water chemistry was related to temporal changes in plant uptake, organic matter decomposition and element mineralization, and to varying redox conditions associated with fluctuating water table levels. On the average, total Ca, Mg, and N concentrations in Big Run Bog peat were 33, 15, and 1050 mol · g–1, respectively; exchangeable Ca and Mg concentrations were 45 and 14 eq · g–1 , respectively. Surface water pH averaged 4.0 and Ca++ concentrations were less than 50 eq · L–1 . These chemical variables have all been used to distinguish bogs from fens. Physiographically, Big Run Bog is a minerotrophic fen because it receives inputs of water from the surrounding forested upland areas of its watershed. However, chemically, Big Run Bog is more similar to true ombrotrophic bogs than to minerotrophic fens.  相似文献   
6.
Hurricane Danny resulted in the rapid deposition of 10cm of oxidized, acidic sediment in the Contrary Creek arm of Lake Anna, Virginia. Several biological and geochemical parameters were monitored with time to ascertain how long it took the newly-deposited lake sediments to attain the anaerobic, circumneutral, actively sulfate-reducing state normally observed in this portion of the lake. The sediment platinum-electrode potential dropped from 350 mV to 100 mV within the first week after the storm. The pH of the pore water increased from 4.5 to 5.8 within three weeks, and titratable alkalinity was detected within two weeks and three weeks at 3 cm and 1 cm depths, respectively. Accumulation of reduced products of sulfate reduction (acid volatile sulfide) began by three to four weeks after the storm event. Both methanogens and sulfate reducers were present in high and approximately equal numbers in the freshly deposited material. The rapid neutralization of the acidity in the fresh sediment prior to the onset of sulfate reduction suggests that reactions other than sulfate reduction caused the initial increase in pH and alkalinity in this system.  相似文献   
7.
Fate of elemental sulfur in an intertidal sediment   总被引:2,自引:0,他引:2  
Abstract: Sediment from a tidal flat at Wedderwarden, near the mouth of the Weser estuary, northern Germany, was amended with elemental sulfur, and concentrations of metabolic end products were monitored. The production of both sulfate and sulfide was consistent with disproportionation as the most important fate of the added elemental sulfur. A population of bacteria conducting active elemental sulfur disproportionation was also enriched from the sediment. In the enrichments, containing both elemental sulfur and Fe oxides as a sulfide 'scrub', sulfide and sulfate were produced in a ratio of     , somewhat lower than the predicted ratio of     . The mismatch between predicted and observed production ratios is explained by the channelling of electrons into autotrophic or mixotrophic CO2 fixation rather than sulfide formation. The production of organic carbon, in the correct amount to explain the observed sulfide to sulfate production ratio, was verified by organic carbon analysis. Finally, rates of sulfate reduction were identical in the elemental sulfur amended sediment, and in control sediment with no added sulfur. Hence, the heterotrophic bacterial community was completely unaffected by an active metabolism conducting elemental sulfur disproportionation.  相似文献   
8.
9.
10.
Two common macrophyte species, Potamogeton perfoliatus L. and Potamogeton pectinatus L. were grown for 12 weeks at shallow depths in sediments contaminated with 1250 or 2500 g Pb or Cu and/or Zn (gDW sediment)-1. Control experiments were run at background levels of 4, 13, and 38 g Pb, Cu and Zn (gDW sediment)-1, respectively. Effects of heavy metals on biomass production and metal uptake and distribution in plants are presented in relation to total amount and plant-available fraction of metals in the sediment.All three studied metals gave reduced biomass production, and the toxicity of the metals decreased in the order Zn>Cu>Pb. The root/shoot biomass ratio increased for P. pectinatus, but decreased for P. perfoliatus with metal treatment. The content of any single metal was higher in shoots than in roots of plants grown on sediments not contaminated with that specific metal, but addition of that metal increased the proportion in roots. The uptake by plants of any of the heavy metals increased with increased metal addition. The magnitude of the plant-available fraction of metals of untreated sediment was Zn>Cu>Pb, and increased in contaminated sediments. Addition of Cu decreased both the plant-available fraction and the total concentration of Zn in the sediment, while increased the uptake of Zn by the plants. The opposite was found for Cu when Zn was added. P. pectinatus accumulated about twice as much Cu as P. perfoliatus. On the other hand, the concentration of Pb was higher in P. perfoliatus than in P. pectinatus, and was negligible in P. pectinatus when cultivated in untreated sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号