首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   1篇
  国内免费   8篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   4篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
The mechanism of transduction of the phytochrome signal regulating the expression of succinate dehydrogenase in Arabidopsis has been investigated. Using the phytochrome mutants of Arabidopsis, it is demonstrated that the inhibition of succinate dehydrogenase in the light may result from the phytochrome A-dependent modulation of Ca2+ amount in the nuclear fraction of leaves. This leads to the activation of expression of the gene pif3 encoding the phytochrome-interacting factor PIF3, which binds to the promoter of the gene sdh1-2 encoding the SDHA subunit of succinate dehydrogenase and suppresses its expression. It is concluded that Ca2+ ions are involved in the phytochrome A-mediated inhibition of succinate dehydrogenase activity in the light.  相似文献   
2.
Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements and hydrogen peroxide production studies by Amplex Red fluorescence, and luminol luminescence in combination with oxygraphy revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q as the site of ROS production in the case of mGPDH. Distinct mechanism of ROS production by the two dehydrogenases is also apparent from induction of ROS generation by ferricyanide which is unique for mGPDH. Furthermore, using native electrophoretic systems, we demonstrated that mGPDH associates into homooligomers as well as high molecular weight supercomplexes, which represent native forms of mGPDH in the membrane. By this approach, we also directly demonstrated that isolated mGPDH itself as well as its supramolecular assemblies are all capable of ROS production.  相似文献   
3.
The 1.64 A structure of the apoenzyme form of saccharopine dehydrogenase (SDH) from Saccharomyces cerevisiae shows the enzyme to be composed of two domains with similar dinucleotide binding folds with a deep cleft at the interface. The structure reveals homology to alanine dehydrogenase, despite low primary sequence similarity. A model of the ternary complex of SDH, NAD, and saccharopine identifies residues Lys77 and Glu122 as potentially important for substrate binding and/or catalysis, consistent with a proton shuttle mechanism. Furthermore, the model suggests that a conformational change is required for catalysis and that residues Lys99 and Asp281 may be instrumental in mediating this change. Analysis of the crystal structure in the context of other homologous enzymes from pathogenic fungi and human sources sheds light into the suitability of SDH as a target for antimicrobial drug development.  相似文献   
4.
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4–3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7–13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6–6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.  相似文献   
5.
The estuarine portion of the Swan–Canning riversystem runs through the centre of Perth,Western Australia's capital city, with apopulation of approximately 1.4 million people. Little is known about impact of chemicalsentering the estuary via road runoff andstormwater drains on biota inhabiting thesystem. Black bream (Acanthopagrusbutcheri) were collected from seven sites inthe Swan–Canning estuary during August andSeptember 2000, at the end of the winter (wet)season. Serum sorbitol dehydrogenase (s-SDH)was unaffected by the sex of the fish and nosignificant differences were observed betweenthe sites indicating that the measuredethoxyresorufin-O-deethylase (EROD)activity was not hindered by hepatic tissuedamage. The black bream were in an advancedstage of gonad maturation, which affected ERODhepatic activity with lower EROD activity infemale compared to male fish. EROD activityand bile metabolite levels were significantlyhigher at the site closest to the Perth CentralBusiness District, while most downstream sitewas the least impacted, which may be due totidal flushing of the lower estuary by marinewaters. The ratio of naphthalene-type tobenzo(a) pyrene (B(a)P)-typemetabolites suggests that the source ofpetroleum hydrocarbons within the river systemis a mixture polycyclic aromatic hydrocarbons(PAHs) from pyrolytic origin and from unburntfuels. Biomarker levels in the black breamindicate that major roads and drains aresignificant contributors of mixed functionoxygenase (MFO) inducing chemicals includingpolycyclic aromatic hydrocarbons (PAH) into theSwan–Canning estuary and that there is noupstream or downstream gradient in biomarkerresponse.  相似文献   
6.
Mitochondrial reactive oxygen species regulate many important biological processes. We studied H2O2 formation by nonsynaptic brain mitochondria in response to the addition of low concentrations of glutamate, an excitatory neurotransmitter. We demonstrated that glutamate at concentrations from 10 to 50 μM stimulated the H2O2 generation in mitochondria up to 4-fold, in a dose-dependent manner. The effect of glutamate was observed only in the presence of Ca2+ (20 μM) in the incubation medium, and the rate of calcium uptake by the brain mitochondria was increased by up to 50% by glutamate. Glutamate-dependent effects were sensitive to the NMDA receptor inhibitors MK-801 (10 μM) and D-AP5 (20 μM) and the inhibitory neurotransmitter glycine (5 mM). We have shown that the H2O2 formation caused by glutamate is associated with complex II and is dependent on the mitochondrial potential. We have found that nonsynaptic brain mitochondria are a target of direct glutamate signaling, which can specifically activate H2O2 formation through mitochondrial respiratory chain complex II. The H2O2 formation induced by glutamate can be blocked by glycine, an inhibitory neurotransmitter that prevents the deleterious effects of glutamate in brain mitochondria.  相似文献   
7.
Kayode S. Oyedotun  Bernard D. Lemire 《BBA》2007,1767(12):1436-1445
The coupling of succinate oxidation to the reduction of ubiquinone by succinate dehydrogenase (SDH) constitutes a pivotal reaction in the aerobic generation of energy. In Saccharomyces cerevisiae, SDH is a tetramer composed of a catalytic dimer comprising a flavoprotein subunit, Sdh1p and an iron-sulfur protein, Sdh2p and a heme b-containing membrane-anchoring dimer comprising the Sdh3p and Sdh4p subunits. In order to investigate the role of heme in SDH catalysis, we constructed an S. cerevisiae strain expressing a mutant enzyme lacking the two heme axial ligands, Sdh3p His-106 and Sdh4p Cys-78. The mutant enzyme was characterized for growth on a non-fermentable carbon source, for enzyme assembly, for succinate-dependent quinone reduction and for its heme b content. Replacement of both Sdh3p His-106 and Sdh4p Cys-78 with alanine residues leads to an undetectable level of cytochrome b562. Although enzyme assembly is slightly impaired, the apocytochrome SDH retains a significant ability to reduce quinone. The enzyme has a reduced affinity for quinone and its catalytic efficiency is reduced by an order of magnitude. To better understand the effects of the mutations, we employed atomistic molecular dynamic simulations to investigate the enzyme's structure and stability in the absence of heme. Our results strongly suggest that heme is not required for electron transport from succinate to quinone nor is it necessary for assembly of the S. cerevisiae SDH.  相似文献   
8.
以西瓜(Citrullus vulgarris)郑抗1号为接穗,日本南瓜(C. moschata)、黑籽南瓜(C. ficifolia)、葫芦(Lagenaria siceraia)为砧木,研究了嫁接苗和自根苗在(7.5±0.5)℃低温胁迫下叶片相关耐寒性指标的变化。结果表明:低温处理后嫁接苗丙二醛(MDA)含量、电解质渗透率显著低于自根苗;叶绿素、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性显著高于自根苗。与处理前相比,12 d时日本南瓜砧、黑籽南瓜砧和葫芦砧嫁接苗叶绿素含量分别降低了30.48%、28.48%和52.69%;葫芦砧嫁接苗MDA含量6 d时较处理前增加了313.16%;3~12 d日本南瓜砧和黑籽南瓜砧嫁接苗电解质渗透率显著低于葫芦砧嫁接苗;低温处理期间,日本南瓜砧嫁接苗可溶性糖含量分别比黑籽南瓜砧和葫芦砧嫁接苗高出24.71%和31.17%,SOD、POD、CAT酶活性高于另外2个组合。综合各项指标显示:3种砧木均能提高接穗对低温的忍耐能力,其顺序为日本南瓜砧>黑籽南瓜砧>葫芦砧。  相似文献   
9.
3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase enzyme (SDH), induces neurodegeneration similar to that observed in Huntington’s disease (HD). Reduction of prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity, bilateral striatal lesions as well as brain oxidative stress are major features of HD. The present study was designed to investigate neuroprotective effect of Ginkgo biloba extract (EGb 761) on 3-NP induced neurobehavioral changes and striatal lesions.Rats administered 3-NP (20 mg/kg, s.c.) for five consecutive days exhibited PPI deficits and locomotor hypoactivity whereas, pretreatment of animals with EGb 761 (100 mg/kg, i.p. for 15 days) ahead of and during the induction of HD by 3-NP (20 mg/kg for 5 days starting at day 8) ameliorated 3-NP-induced neurobehavioral deficits. Administration of 3-NP increased the level of striatal malondialdehyde (MDA). This effect was prevented in animals pre-treated with EGb 761. Changes in the level of apoptotic regulatory gene expressions, following 3-NP treatment, were demonstrated as both an up-regulation and a down-regulation of the expression levels of striatal Bax and Bcl-xl genes, respectively. In addition, an up-regulation of the expression level of striatal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also observed. Pre-treatment with EGb 761 caused a down-regulation in striatal GAPDH and Bax together with an up-regulation of striatal Bcl-xl expression level as compared to the 3-NP treated group. Histochemical examination of striatal tissue showed that EGb 761 significantly prevented 3-NP induced inhibition of SDH activity. Histopathological examination further affirmed the neuroprotective effect of EGb 761 against 3-NP toxicity.Taken together, these results suggest that EGb 761 has a neuroprotective role in the current HD paradigm, which may be related to improvement of energy metabolism, antioxidant properties and antiapoptotic effects.  相似文献   
10.
Metabolic reprogramming of cells from the innate immune system is one of the most noteworthy topics in immunological research nowadays. Upon infection or tissue damage, innate immune cells, such as macrophages, mobilize various immune and metabolic signals to mount a response best suited to eradicate the threat. Current data indicate that both the immune and metabolic responses are closely interconnected. On account of its peculiar position in regulating both of these processes, the mitochondrion has emerged as a critical organelle that orchestrates the coordinated metabolic and immune adaptations in macrophages. Significant effort is now underway to understand how metabolic features of differentiated macrophages regulate their immune specificities with the eventual goal to manipulate cellular metabolism to control immunity. In this review, we highlight some of the recent work that place cellular and mitochondrial metabolism in a central position in the macrophage differentiation program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号