首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   0篇
  国内免费   8篇
  98篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   5篇
  2012年   1篇
  2011年   9篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   6篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme   总被引:8,自引:0,他引:8  
Ribonuclease P is the endonuclease required for generating the mature tRNA 5'-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in size and structure among diverse phylogenetic groups, the protein contribution to the holoenzyme is highly variable in size and number of the individual components. The structure of the bacterial protein component has recently been solved. In contrast, the spatial arrangement of the multiple subunits in eukaryotic enzymes is still enigmatic. Substrate requirements of the enzymes or their catalytic RNA subunits are equally diverse, ranging from simple single domain mimics to an almost intact three-dimensional structure of the pre-tRNA substrate. As an example for an intermediate in the enzyme evolution, ribonuclease P from the Cyanophora paradoxa cyanelle will be discussed in more detail. This enzyme is unique, as it combines cyanobacterial and eukaryotic features in its function, subunit composition and holoenzyme topology.  相似文献   
2.
PreparationofMeioticKarytypeofMouseOocyteLiChaojunYanLeipingZhangXiranChenYifeng(BiologyDepartmentofNanjingNormalUniversity,Nanjing210097)哺乳动物的卵母细胞的减数分裂过程中存在两次自发的停滞现象,第一次是在第一次减数分裂前期的双线期,这一静止期持续很长时间,一直到动物性成熟后卵母细胞进入发有周刎,在保住腺激素的作用下,卵母细胞的第一次减数分裂才重新启动.完成第一次减数分裂后.又停滞在第二次减数分裂的中期,在椅子或化学因素刺激的作用下,完成第二次减数分裂[4].因此,对哺乳动物的卵母细胞在一…  相似文献   
3.
核酶Ripc对HBV基因体外转录物的作用   总被引:11,自引:0,他引:11  
王平  徐炜 《病毒学报》1993,9(3):278-280
  相似文献   
4.
R B Waring  R W Davies 《Gene》1984,28(3):277-291
A widespread class of introns is characterized by a particular RNA secondary structure, based upon four conserved nucleotide sequences. Among such "class I" introns are found the majority of introns in fungal mitochondrial genes and the self-splicing intron of the large ribosomal RNA of several species of Tetrahymena. A model of the RNA secondary structure, which must underlie the self-splicing activity, is here evaluated in the light of data on 16 further introns. The main body or "core structure" of the intron always consists of the base-paired regions P3 to P9 with the associated single-stranded loops, with P2 present also in most cases. Two minority sub-classes of core structure occur, one of which is typical of introns in fungal ribosomal RNA. Introns in which the core structure is close to the 5' splice site all have an internal guide sequence (IGS) which can pair with exon sequences adjacent to the 5' and 3' splice sites to align them precisely, as proposed by Davies et al. [Nature 300 (1982) 719-724]. In these cases, the internal guide model allows us to predict correctly the exact location of splice sites. All other introns probably use other mechanisms of alignment. This analysis provides strong support for the RNA splicing model which we have developed.  相似文献   
5.
A brief review of the genetic studies on ribonuclease P (RNase P) fromEscherichia coli is presented. Temperature-sensitive mutants ofE. coli defective in tRNA processing were isolated by screening cells which were unable to synthesize a suppressor tRNA at restrictive temperature. Structural analysis of accumulated tRNA precursors showed that the isolated mutants were defective in RNase P activity. Analyses of the mutants revealed that the enzyme is essential for the synthesis of all tRNA molecules in cells and that the enzymes consists of two subunits. Analyses of the isolated mutants revealed a possible domain structure of the RNA subunit of the enzyme.Abbreviations E. coli Escherichia coli - RNase P ribonuclease P  相似文献   
6.
7.
Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2′-O-transphosphorylation by the hepatitis delta virus (HDV) ribozyme is sensitive to the identity of the N(–1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2′O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(–1) nucleobase contributes to HDV catalysis and test the utility of this approach for RNA structure–function studies. Internal competition reactions containing all four substrate sequence variants at the N(–1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed base-pairing interaction. Mutants A78U, A78G, and A79G retain significant catalytic activity but do not alter the specificity for the N(–1) nucleobase. Effects of nucleobase analog substitutions at N(–1) indicate that U is preferred due to the ability to donate an H-bond in the Watson–Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site and illustrate multiple substrate kinetic analyses as a practical approach for characterizing structure–function relationships in RNA reactions.  相似文献   
8.
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5′ and 3′ hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5′ arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix+loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5′ and the 3′ arms of a miniribozyme containing an optimized sequence for helix+loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of genelength RNA substrates may be best achieved by miniribozymes.  相似文献   
9.
增殖细胞核抗原(PCNA)是DNA聚合酶δ的辅助蛋白,它是细胞染色体DNA复制所必需的。人工设计的ribozyme具有可特异地切割PCNA mRNA的性质,将此ribozyme的自修剪体内表达质粒导入HeLa细胞,从细胞总RNA中分离相应部分能在体外切割靶RNA片段,证明此表达质粒在细胞内能表达出有活性的ribozyme分子。与对照相比,导入ribo-zyme表达质粒的HeLa细胞进入S期的时间从12 h推迟到20 h,而突变ribozyme的对照表明反义抑制对细胞进入S期的影响较小(推迟到15 h)。证明该ribozyme能有效抑制He-La细胞DNA复制,同时亦证明PCNA对于细胞DNA复制及细胞周期进程的重要性。  相似文献   
10.
以含绿色荧光蛋白(GFP)基因的质粒pSK100-DS、含切割对虾杆状病毒基因的核酶Rz1的质粒pRGRzl、含核酶Rz2的质粒pRGRz2和转基因空质粒pcDNA3为基础,把绿色荧光蛋白GFP基因克隆于pcDNA3的SV40启动了下面,由SV40启动子控制,含四个两种核酸基因的四联体克隆于pcDNA3的多克隆位点区,由T7启动子控制,构建成含两个Rz1、两个Rz2和GFP基因的转基因质粒pGTR,以用于转基因抗病毒对虾的研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号