首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
  国内免费   1篇
  2019年   1篇
  2016年   2篇
  2014年   3篇
  2013年   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有57条查询结果,搜索用时 96 毫秒
1.
Summary Drosophila rearing media had only -carotene, zeaxanthin or lutein as precursors for photopigment chromophores. Zeaxanthin and lutein are potentially optimum sources of the 3-hydroxylated retinoids of visual and accessory photopigments. Mutants made the electroretinogram in white (w) eyes selective for compound eye photoreceptors R1–6, R7 and R8: R1–6 domiantes w's electroretinogram; R7/8 generates w;ora's (ora = outer rhabdomeres absent); R8 generates w sev;- ora's (sev = sevenless). Microspectrophotometry revealed R1-6's visual pigment. In w, all 3 carotenoids yielded monotonic dose-responses for sensitivity (Fig. 4) or visual pigment (Fig. 7). An ultraviolet sensitivity peak from R1-6's sensitizing pigment was present at high but not low doses (Fig. 1). In w;ora, all 3 carotenoids gave similar spectra dominated by R7's high ultraviolet sensitivity (Fig. 2). For w sev;ora, all spectra were the shape expected for R8, peaking around 510 nm (Fig. 3). The sensitivity dose-response was at its ceiling except for low doses in w;ora (Fig. 5) and zero supplementation in w sev;ora (Fig. 6). Hence, without R1-6, most of our dose range mediated maximal visual pigment formation. In Drosophila, -carotene, zeaxanthin and lutein mediate the formation of all major photopigments in R1-6, R7 and R8.Abbreviations ERG electroretinogram - MSP microspectrophotometry - HPLC high pressure liquid chromatography - n.a. numerical aperture - w, sev, ora Drosophila mutants - y, p, r marg types of R7 and R8  相似文献   
2.
A method for separating and detecting retinoids by reversed-phase capillary liquid chromatography with amperometric electrochemical detection is described. Packed columns with an inner diameter of 180 μm were employed for the separation using a C18 stationary phase and a mobile phase containing acetonitrile-water-methanol (65:32.5:2.5, v/v/v) with 1% tetrabutylammonium perchlorate and 0.174 M acetate buffered at pH 5. The detection cell consisted of a carbon fiber barrel electrode held at 0.9 V versus an Ag/AgCl reference. Injection volumes of 2 μl produced detection limits of 2.73, 0.472, 0.428, and 0.267 fmol (or 410, 64.1, 60.9, and 38.2 pg ml−1) for 13-cis-retinoic acid, all-trans-retinoic acid, retinaldehyde, and retinol, respectively. This represents an improvement in detection limits of at least three orders of magnitude for similar analyses using liquid chromatography and UV absorbance detection. The detector signal was linear over two orders of magnitude of analyte concentration. Retinoid concentrations in bovine serum were determined and found to be in good agreement with previously reported values.  相似文献   
3.
A small acidic polypeptide, termed thymosin beta 10, has been identified and is present in the nervous system of the rat by the ninth day of gestation. Thymosin beta 10 levels rise during the remaining days of life in utero, and then decline to nearly undetectable values between the second and fourth week post partum. The present study investigates the possible developmental signals and mechanisms that might regulate the expression of thymosin beta 10 during neuroembryogenesis. Many cell lines derived from tumors of the central nervous system express thymosin beta 10, as well as its homologue gene product, thymosin beta 4. Because some of these cell lines respond to exogenously applied agents by increasing their apparent state of differentiation, we have determined whether thymosin beta 10 levels are coordinately modulated. In several neuroblastomas, including the B103 and B104 lines, retinoic acid elicits a time- and dose-dependent increase in the content of thymosin beta 10, but not that of thymosin beta 4. The increase in thymosin beta 10 polypeptide is associated with a marked increase in the specific mRNA encoding this molecule. The mRNA for thymosin beta 4 is unaffected by retinoic acid. This is in contrast with the situation in vivo, where the expression of both genes decreases after birth. Other agents that influence the morphology of B104 cells, such as phorbol esters and dibutyryl cyclic AMP, have no influence on beta-thymosin levels. A range of steroids, which like retinoids act upon nuclear receptors, was also inactive. The stimulatory action of retinoic acid is detectable within 4 h, and thymosin beta 10 peptide levels continue to rise for at least 4 days. The influence of the isoprenoid is fully reversible and exhibits structural specificity. We believe that this culture system is mimicking the early rising phase of thymosin beta 10 levels in brain and that endogenous retinoids may be candidate physiological regulators of this gene.  相似文献   
4.
Several vitamin A compounds have been tested for their ability to suppress formation of DNA adduct by the carcinogen benzo[a]pyrene (B[a]P) in an in vitro reaction catalyzed by rat liver microsomes. Retinol, retinal, 3-dehydroretinol and 3-hydroxyretinol were found to be effective inhibitors of adduct formation. Certain carotenoids that are precursors of these retinoids also displayed considerable inhibitory capacity. Carotenoids and the 3-substituted retinoids appeared to modulate the DNA adduct formation exclusively through their action on microsomal enzymes, since an effective inhibition in each case was observed on the formation of B[a]P-7,8-diol, a proximate carcinogenic metabolite of B[a]P. Unsubstituted retinoids, on the other hand, had marginal effect on enzymes but were found effective in accelerating inactivation of B[a]P-7,8-diol-9,10-epoxide, the ultimate carcinogenic metabolite that binds to DNA.  相似文献   
5.
The products of Hox genes function in assigning positional identity along the anterior–posterior body axis during animal development. In mouse embryos, Hox genes located at the 3′ end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3′ flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3′ proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during cardiogenesis.  相似文献   
6.
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI–IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI–IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.  相似文献   
7.
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.  相似文献   
8.
We have previously shown that retinoic acid (RA) synthesized by the retinaldehyde dehydrogenase 2 (RALDH2) is required in forebrain development. Deficiency in RA due to inactivation of the mouse Raldh2 gene or to complete absence of retinoids in vitamin-A-deficient (VAD) quails, leads to abnormal morphogenesis of various forebrain derivatives. In this study we show that double Raldh2/Raldh3 mouse mutants have a more severe phenotype in the craniofacial region than single null mutants. In particular, the nasal processes are truncated and the eye abnormalities are exacerbated. It has been previously shown that retinoids act mainly on cell proliferation and survival in the ventral forebrain by regulating SHH and FGF8 signaling. Using the VAD quail model, which survives longer than the Raldh-deficient mouse embryos, we found that retinoids act in maintaining the correct position of anterior and dorsal boundaries in the forebrain by modulating FGF8 anteriorly and WNT signaling dorsally. Furthermore, BMP4 and FGF8 signaling are affected in the nasal region and BMP4 is ventrally expanded in the optic vesicle. At the optic cup stage, Pax6, Tbx5 and Bmp4 are ectopically expressed in the presumptive retinal pigmented epithelium (RPE), while Otx2 and Mitf are not induced, leading to a dorsal transdifferentiation of RPE to neural retina. Therefore, besides being required for survival of ventral structures, retinoids are involved in restricting anterior identity in the telencephalon and dorsal identity in the diencephalon and the retina.  相似文献   
9.
During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.  相似文献   
10.
We report robust HPLC/UV methods for quantifying retinyl esters (RE), retinol (ROL), and retinal (RAL) applicable to diverse biological samples with lower limits of detection of 0.7, 0.2, and 0.2 pmol, respectively, and linear ranges greater than 3 orders of magnitude. These assays function well with small, complex biological samples (10-20 mg tissue). Coefficients of variation range from 5.9 to 10.0% (intraday) and from 5.9 to 11.0% (interday). Quantification of endogenous RE, ROL, and RAL in mouse serum and tissues (liver, kidney, adipose, muscle, spleen, testis, skin, brain, and brain regions) reveals utility. Ability to discriminate spatial concentrations of ROL and RE is illustrated with C57BL/6 mouse brain loci (hippocampus, cortex, olfactory bulb, thalamus, cerebellum, and striatum). We also developed a method to distinguish isomeric forms of ROL to investigate precursors of retinoic acid. The ROL isomer assay has limits of detection between 3.5 and 4.5 pmol and has a linear range and coefficient of variation similar to those of the ROL/RE and RAL assays. The assays described here provide for sensitive and rigorous quantification of endogenous RE, ROL, and RAL to elucidate retinoid homeostasis in disease states such as Alzheimer’s disease, type 2 diabetes, obesity, and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号