首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2019年   2篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2011年   4篇
  2007年   5篇
  2006年   3篇
排序方式: 共有19条查询结果,搜索用时 62 毫秒
1.
Non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are leading causes of cancer mortality and morbidity around the world. Despite the recent advances in their diagnosis and therapy, their prognosis remains poor owing to the development of drug resistance and metastasis. Raloxifene (RX), a drug first used in the treatment of osteoporosis, was recently approved for NSCLC and HCC prevention. Unfortunately, many of the therapies that use RX are likely to become ineffective due to drug resistance. Herein, we developed a novel delivery strategy by utilizing hyaluronic acid (HA) and chitosan (CS) complexation to increase the half-life and activity of RX. Consequently, we explored the pro-apoptotic and cytotoxic effects of RX-HA-CS nanoparticles (NPs) against NSCLC (A549) and HCC (HepG2 and Huh-7) cell lines. The highest entrapment efficiency (EE%) was noted in RX-HA-CS NPs (92%) compared to RX-HA NPs (87.5%) and RX-CS NPs (68%). In addition, RX-HA-CS NPs induced the highest cytotoxicity against A549 cells compared to other platforms. The significant suppression of A549 cell viability was achieved via glucose uptake reduction resulting in diminished bioenergetics of cancer cells and activation of apoptosis via nitric oxide level elevation. This study is the first to assess the efficacy of RX in its HA-CS nano-formulation against lung and liver cancer cells and demonstrated its selective cytotoxic and apoptotic potential against human lung A549 cancer cell line. These findings demonstrate a promising drug delivery system to help mitigate drug resistance in lung cancer.  相似文献   
2.
As raloxifene is a mixed estrogen receptor agonist and antagonist, it exerts different effects on apoptosis in different tissues. In this study, we aimed to evaluate apoptosis in the peripheral lymphocytes of postmenopausal women treated with raloxifene and compare it with untreated control subjects. In this way, we expected to deduce some results about the effect of raloxifene on the immune system and to serve as a guide for future studies on this newly proposed effect of a well-known agent. Twenty osteoporotic postmenopausal women treated with raloxifene for 12 months were included in this study. Another 20 osteoporotic postmenopausal women matched for age and postmenopausal years, but without any medication, were chosen as the control group. Apoptosis was evaluated using a morphological and DNA fragmentation assay, in the peripheral lymphocytes of these women. Our results revealed a decrease in the apoptosis percentages of the patients treated with raloxifene (14.6%) with respect to the control subjects (15.8%), but the difference was not statistically significant (p=0.467). This study indicated that raloxifene treatment had no apoptotic effect on peripheral human lymphocytes compared to controls.  相似文献   
3.
Raloxifene is a polyaromatic compound which has been reported to form radicals when incubated with horseradish peroxidase resulting in formation of a homo-dimer product. Polyaromatic phenols have also been reported to undergo oxidation by P450 enzymes to form reactive intermediates, presumably through the formation of phenoxy radical species. Recently, we observed that a raloxifene homo-dimer was formed in vitro when incubated with CYP3A4. In response to this finding, a series of experiments were designed to determine whether the observed raloxifene homo-dimer was formed via solution phase chemistry similar to that previously documented with horseradish peroxidase or if generation of the homo-dimer occurred within the P450 active site. To this end, a series of experiments were carried out to determine the structure of the CYP3A4 generated raloxifene homo-dimer using analytical techniques including: high resolution MS, NMR and H/D exchange. In addition, a variety of in vitro techniques were applied to characterize the mechanism responsible for formation of the raloxifene homo-dimer. Collectively, the results of these experiments suggest that unlike the homo-dimer formed by peroxidase enzymes, raloxifene homo-dimer formation mediated by CYP3A4 is a consequence of two raloxifene molecules binding simultaneously within the active site of a catalytically competent P450 enzyme.  相似文献   
4.
Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure–activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen.  相似文献   
5.
Peroxidase secreted in tears by the lacrimal glands is a marker of secretory activity of these glands and is believed to have an antimicrobial function. We report for the first time a marked sex difference in lacrimal gland (LG) peroxidase in hamsters ( approximately 3.4-fold higher activity in females), which is due to an unusual repression by physiological levels of androgens in males. LG peroxidase activity was markedly induced in a time-dependent manner after gonadectomy in males and also females ( approximately 8- and 2-fold, respectively) and was strongly repressed by androgen treatment in a dose- and time-dependent manner. Estrogen treatment of gonadectomized hamsters could also repress LG peroxidase but not below female levels. These repressions by androgens and estrogens were significantly prevented upon co-treatment with their respective receptor antagonists. Western blotting showed that differences in LG peroxidase specific activity, in different sex hormonal states and treatments were due to changes in the levels of peroxidase protein in LG. A tear peroxidase with a clear sex difference suggests that it might also have other novel function(s) in hamster tears.  相似文献   
6.
The human complement fragment 5a (hC5a) is an extremely potent proinflammatory glycoprotein, which upon binding to C5aR triggers a plethora of immune and non-immunological responses in humans. Dysregulation of complement system is associated with the upregulation of hC5a, leading to the surge of proinflammatory cytokines, which further exacerbate the chronic inflammation induced pathological conditions. Thus, hC5a is considered as a major pharmacological target for developing complement therapeutics that can directly or indirectly modulate the function of hC5a. However, the idea of small molecules, directly neutralizing the function of excessive hC5a remains unexplored in the literature. By recruiting cheminformatics approach, the avenue of drug repositioning is explored in the current study for discovering novel neutraligands of hC5a. The systematic exercise yields a pool of potential neutraligands, from which four FDA approved drugs, such as carprofen, oxaprozin, sulindac and raloxifene have been subjected to a battery of computational and biophysical studies against hC5a. The data obtained from docking, molecular dynamics, and molecular mechanics Poisson-Boltzmann surface area studies, strongly correlate with the data obtained from the circular dichroism, steady state fluorescence, and fluorescence quenching studies, involving the recombinant hC5a and the selected drugs. The proof of the concept study successfully documents the rational discovery of first generation template neutraligands of hC5a through drug repositioning approach and suggests that the selected drugs perhaps bind functionally distinct hot spots on hC5a. The identified neutraligands can be subsequently optimized as complement specific therapeutics for strongly modulating the hC5a-C5aR signaling axes.  相似文献   
7.
Androgen deprivation causes impairment of cognitive tasks in rodents and humans, and this deficit can be reverted by androgen replacement therapy. Part of the effects of androgens in the male may be mediated by their local metabolism to estradiol or 3-alpha androstanediol within the brain and the consequent activation of estrogen receptors. In this study we have assessed whether the administration of estradiol benzoate, the estrogen receptor β selective agonist diarylpropionitrile or the estrogen receptor α selective agonist propyl pyrazole triol affect performance of androgen-deprived male Wistar rats in the cross-maze test. In addition, we tested the effect of raloxifene and tamoxifen, two selective estrogen receptor modulators used in clinical practice. The behavior of the rats was assessed 2 weeks after orchidectomy or sham surgery. Orchidectomy impaired acquisition in the cross-maze test. Estradiol benzoate and the selective estrogen receptor β agonist significantly improved acquisition in the cross-maze test compared to orchidectomized animals injected with vehicle. Raloxifene and tamoxifen at a dose of 1 mg/kg, but not at doses of 0.5 or 2 mg/kg, also improved acquisition of orchidectomized animals. Our findings suggest that estrogenic compounds with affinity for estrogen receptor β and selective estrogen receptor modulators, such as raloxifene and tamoxifen, may represent good candidates to promote cognitive performance in androgen-deprived males.  相似文献   
8.
The objective of this article is to review genotoxicological profile of the major selective estrogen receptor modulators, including clomiphene, tamoxifen, toremifene, raloxifene. These drugs have been used for infertility treatment and breast cancer prevention in high risk-women. However, some studies reported that especially tamoxifen is a genotoxic agent and is related with endometrial cancer. Our review indicate that clomiphene and tamoxifen were found as genotoxic agent in majority of the tests. However published reports showed that toremifene is a weakly genotoxic agent. The genotoxic effects of raloxifene are still poorly known. Further genotoxicity studies should be conducted especially for raloxifene.  相似文献   
9.
We seek to evaluate the clinical consequences of resistance to antihormonal therapy by studying analogous animal xenograft models. Two approaches were taken: (1) MCF-7 tumors were serially transplanted into selective estrogen receptor modulator (SERM)-treated immunocompromised mice to mimic 5 years of SERM treatment. The studies in vivo were designed to replicate the development of acquired resistance to SERMs over years of clinical exposure. (2) MCF-7 cells were cultured long-term under SERM-treated or estrogen withdrawn conditions (to mimic aromatase inhibitors), and then injected into mice to generate endocrine-resistant xenografts. These tumor models have allowed us to define Phase I and Phase II antihormonal resistance according to their responses to E2 and fulvestrant. Phase I SERM-resistant tumors were growth stimulated in response to estradiol (E2), but paradoxically, Phase II SERM and estrogen withdrawn-resistant tumors were growth inhibited by E2. Fulvestrant did not support growth of Phases I and II SERM-resistant tumors, but did allow growth of Phase II estrogen withdrawn-resistant tumors. Importantly, fulvestrant plus E2 in Phase II antihormone-resistant tumors reversed the E2-induced inhibition and instead resulted in growth stimulation. These data have important clinical implications. Based on these and prior laboratory findings, we propose a clinical strategy for optimal third-line therapy: patients who have responded to and then failed at least two antihormonal treatments may respond favorably to short-term low-dose estrogen due to E2-induced apoptosis, followed by treatment with fulvestrant plus an aromatase inhibitor to maintain low tumor burden and avoid a negative interaction between physiologic E2 and fulvestrant.  相似文献   
10.

Introduction  

Postmenopausal patients with rheumatoid arthritis (RA) are often treated with corticosteroids. Loss of estrogen, the inflammatory disease and exposure to corticosteroids all contribute to the development of osteoporosis. Therefore, our aim was to investigate if addition of the selective estrogen receptor modulator raloxifene, or estradiol, could prevent loss of bone mineral density in ovariectomized and dexamethasone treated mice with collagen-induced arthritis (CIA).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号