首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   4篇
  国内免费   1篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   12篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   12篇
  2010年   13篇
  2009年   5篇
  2008年   9篇
  2007年   14篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有160条查询结果,搜索用时 46 毫秒
1.
2.
Using the whole-cell configuration of the patch-clamp technique, we studied the conditions necessary for the activation of Cl-currents in retinal pigment epithelial (RPE) cells from rats with retinal dystrophy (RCS) and nondystrophic control rats. In RPE cells from both rat strains, intracellular application of 10 μm inositol-1,4,5-triphosphate (IP3) via the patch pipette led to a sustained activation of voltage-dependent Cl currents, blockable by 1 mm 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). IP3 activated Cl currents in the presence of a high concentration of the calcium chelator BAPTA (10 mm) in the pipette solution, but failed to do so when extracellular calcium was removed. Intracellular application of 10−5 m Ca2+ via the patch pipette also led to a transient activation of Cl currents. When the cells were preincubated in a bath solution containing thapsigargin (1 μm) for 5 min before breaking into the whole-cell configuration, IP3 failed to activate voltage-dependent currents. Thus, IP3 led to release of Ca2+ from cytosolic calcium stores. This in turn activated an influx of extracellular calcium into the submembranal space by a mechanism as yet unknown, leading to an activation of calcium-dependent chloride currents. In RPE cells from RCS rats, which show an increased membrane conductance for calcium compared to normal rats, we observed an accelerated speed of Cl-current activation induced by IP3 which could be reduced by nifedipine (1 μm). Thus, the increased membrane conductance to calcium in RPE cells from RCS rats changes the response of the cell to the second messenger IP3. Received: 17 July 1995/Revised: 31 January 1996  相似文献   
3.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   
4.
5.
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI–IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI–IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.  相似文献   
6.
Vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE) plays an important role in ocular homeostasis, but also in diseases, most notably age-related macular degeneration (AMD). To date, anti-VEGF drugs like ranibizumab have been shown to be most effective in treating these pathologic conditions. However, clinical trials suggest that the RPE could degenerate and perish through anti-VEGF treatment. Herein, we evaluated possible pathways and outcomes of the interaction between ranibizumab and human RPE cells (ARPE-19). Results indicate that ranibizumab affects the VEGF-A metabolism in RPE cells from an extra- as well as intracellular site. The drug is taken up into the cells, with the VEGF receptor 2 (VEGFR-2) being involved, and decreases VEGF-A protein levels within the cells as well as extracellularly. Oxidative stress plays a key role in various inflammatory disorders of the eye. Our results suggest that oxidative stress inhibits RPE cell proliferation. This anti-proliferative effect on RPE cells is significantly enhanced through ranibizumab, which does not inhibit RPE cell proliferation substantially in absence of relevant oxidative stress. Therefore, we emphasize that anti-VEGF treatment should be selected carefully in AMD patients with preexistent extensive RPE atrophy.  相似文献   
7.
Late‐onset retinal degeneration (L‐ORD) is an autosomal dominant macular degeneration characterized by the formation of sub‐retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L‐ORD results from mutations in the C1q‐tumor necrosis factor‐5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L‐ORD pathology, we used a human cDNA library yeast two‐hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM‐Ch) from wild‐type (Wt), heterozygous S163R Ctrp5 mutation knock‐in (Ctrp5S163R/wt), and homozygous knock‐in (Ctrp5S163R/S163R) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C‐terminal PDZ‐binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R‐CTRP5 protein also binds to HTRA1 but is resistant to HTRA1‐mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM‐Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L‐ORD pathology.  相似文献   
8.
We have previously shown that retinoic acid (RA) synthesized by the retinaldehyde dehydrogenase 2 (RALDH2) is required in forebrain development. Deficiency in RA due to inactivation of the mouse Raldh2 gene or to complete absence of retinoids in vitamin-A-deficient (VAD) quails, leads to abnormal morphogenesis of various forebrain derivatives. In this study we show that double Raldh2/Raldh3 mouse mutants have a more severe phenotype in the craniofacial region than single null mutants. In particular, the nasal processes are truncated and the eye abnormalities are exacerbated. It has been previously shown that retinoids act mainly on cell proliferation and survival in the ventral forebrain by regulating SHH and FGF8 signaling. Using the VAD quail model, which survives longer than the Raldh-deficient mouse embryos, we found that retinoids act in maintaining the correct position of anterior and dorsal boundaries in the forebrain by modulating FGF8 anteriorly and WNT signaling dorsally. Furthermore, BMP4 and FGF8 signaling are affected in the nasal region and BMP4 is ventrally expanded in the optic vesicle. At the optic cup stage, Pax6, Tbx5 and Bmp4 are ectopically expressed in the presumptive retinal pigmented epithelium (RPE), while Otx2 and Mitf are not induced, leading to a dorsal transdifferentiation of RPE to neural retina. Therefore, besides being required for survival of ventral structures, retinoids are involved in restricting anterior identity in the telencephalon and dorsal identity in the diencephalon and the retina.  相似文献   
9.
Park SE  Song JD  Kim KM  Park YM  Kim ND  Yoo YH  Park YC 《FEBS letters》2007,581(2):180-186
The diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the apoptosis of human RPE cells. DPI treatment in ARPE-19 cells evoked a dose- and time-dependent growth inhibition, and also induced DNA fragmentation and protein content of the proapoptotic factor Bax. In addition, DPI significantly induced the expression and phosphorylation of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest. ROS have been implicated as a key factor in the activation of p53 by many chemotherapeutic drugs. Recent data on the regulation of intracellular ROS by DPI are controversial. Therefore, we analyzed whether DPI could contribute to the generation of intracellular ROS. Although there was increase in ROS level from cells treated for 24h with DPI, it was not detectable at early time points, required to induce p53 expression. And DPI-induced p53 expression was not affected by the ROS scavenger NAC. We conclude that DPI induces the expression of p53 by ROS-independent mechanism in ARPE-19 cells, and renders cells sensitive to drug-induced apoptosis by induction of p53 expression.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号