首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The sterile insect technique (SIT), when used for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), generally relies on the release of sterile flies of only the male sex. Male selection is achieved through the use of a genetic sexing strain (GSS) in which females are killed by heat treatment in the generation prior to release. Transgenic sexing strains (TSS) have been developed that perform the same function of female-lethality, this time by withholding tetracycline (or related compounds) from the larval diet. The use of TSS may allow for certain problems associated with conventional GSS, such as strain instability and reduced productivity in mass-rearing, to be avoided. The performance, and principally the sexual competitiveness, of released male flies is important for the success of an SIT control programme. This study describes field cage experiments in which the competitiveness of males from a TSS (OX3376B) was compared with that of a conventional GSS (VIENNA-8) and two wild-type strains (TOLIMAN and ARG). When competing for female mates with wild-type males, OX3376B male performance was acceptable. When OX3376B males competed directly for mates with VIENNA-8 males, VIENNA-8 slightly outperformed the TSS males. Parallel tests, in which wild-type males competed with either OX3376B or VIENNA-8 males, showed that males from both sexing strains were highly competitive with wild-type males. These results suggest that OX3376B in particular, and TSS in general, show sufficiently good mating competitiveness to merit further research into their suitability for eventual use in SIT programmes.  相似文献   
2.
【目的】doublesex 是控制昆虫性别分化的关键基因,决定了昆虫体细胞与生殖细胞的性别。本研究旨在克隆、鉴定重要疟疾媒介冈比亚按蚊 Anopheles gambiae 性别决定基因 doublesex(Angdsx),分析其在雌雄个体内的剪切体及在不同发育时期的表达模式。【方法】基于冈比亚按蚊转录组数据库,比对到 Angdsx 相关片段,分别以雌雄成蚊cDNA为模板,采用RT-PCR与RACE方法克隆分别获得雌雄个体内 Angdsx 全长基因,利用生物信息软件对所得序列进行结构域预测、氨基酸序列比对和进化树分析。根据 Angdsx 特异性表达引物,利用RT-PCR方法研究其在冈比亚按蚊雌雄个体及不同发育时期的表达谱。【结果】分别从冈比亚按蚊雌雄成虫中克隆获得 Angdsx cDNA全长序列,分别命名为AngdsxF(GenBank登录号:KM978937)和 Angdsx M(GenBank登录号:KM978938)。Angdsx 位于2号常染色体右臂,基因横跨接近80 kb基因组长度。AngdsxF 长度为4 874 nt,编码长度为265 个氨基酸的雌性特异性蛋白DSXF;Angdsx M 长度为3 183 nt,编码长度为633个氨基酸的雄性特异性蛋白DSXM。结构域分析发现 Angdsx 包括 doublesex 保守的TRA/TRA-2结合位点、dsx 重复序列、富含精氨酸/丝氨酸双肽区、多聚嘌呤增强子序列和RNA结合蛋白结合序列,以及连续的双核苷酸GT为主的重复序列。与AngdsxF 相比, Angdsx M具有一个雌性特异性的外显子。Angdsx M 在0-2 h卵中高表达,随后逐渐减少,在12-24 h卵中降至最低,之后再次升高;AngdsxF 则在6-8 h卵中开始表达。【结论】本研究获得了冈比亚按蚊性别决定基因 Angdsx 在雌雄个体内的全长序列,Angdsx 具有保守的结构域与表达特征。本研究结果为蚊虫性别分化的分子机制及将其最终应用于显性致死昆虫施放技术进行蚊媒的防制提供了理论基础。  相似文献   
3.
4.
Modeling resistance to genetic control of insects   总被引:2,自引:0,他引:2  
The sterile insect technique is an area-wide pest control method that reduces pest populations by releasing mass-reared sterile insects which compete for mates with wild insects. Modern molecular tools have created possibilities for improving and extending the sterile insect technique. As with any new insect control method, questions arise about potential resistance. Genetic RIDL®1 (Release of Insects carrying a Dominant Lethal) technology is a proposed modification of the technique, releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation. Hypothetical resistance to the lethal mechanism is a potential threat to RIDL strategies' effectiveness. Using population genetic and population dynamic models, we assess the circumstances under which monogenic biochemically based resistance could have a significant impact on the effectiveness of releases for population control. We assume that released insects would be homozygous susceptible to the lethal genetic construct and therefore releases would have a built-in element of resistance dilution. We find that this effect could prevent or limit the spread of resistance to RIDL constructs; the outcomes are subject to competing selective forces deriving from the fitness properties of resistance and the release ratio. Resistance that is spreading and capable of having a significant detrimental impact on population reduction is identifiable, signaling in advance a need for mitigating action.  相似文献   
5.
Mosquito-borne diseases are causing a substantial burden of mortality, morbidity and economic loss in many parts of the world, despite current control efforts, and new complementary approaches to controlling these diseases are needed. One promising class of new interventions under development involves the heritable modification of the mosquito by insertion of novel genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm. Once released into a target population, these modifications can act to reduce one or more components of the mosquito population''s vectorial capacity (e.g. the number of female mosquitoes, their longevity or their ability to support development and transmission of the pathogen). Some of the modifications under development are designed to be self-limiting, in that they will tend to disappear over time in the absence of recurrent releases (and hence are similar to the sterile insect technique, SIT), whereas other modifications are designed to be self-sustaining, spreading through populations even after releases stop (and hence are similar to traditional biological control). Several successful field trials have now been performed with Aedes mosquitoes, and such trials are helping to define the appropriate developmental pathway for this new class of intervention.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号