首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   3篇
  国内免费   6篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   4篇
  2015年   9篇
  2014年   15篇
  2013年   20篇
  2012年   3篇
  2011年   13篇
  2010年   11篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   8篇
  2002年   5篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有162条查询结果,搜索用时 125 毫秒
1.
2.
Cholecystokinin (CCK) and enkephalins appear to be colocalized in several brain structures, and a physiological interaction between these peptides has been suggested by a large number of pharmacological studies. In this work we have shown, by in vivo binding experiments, that the endogenous enkephalins, protected from degrading enzymes by mixed inhibitors such as kelatorphan and N-[(R,S)-2-benzyl-3-[(S)-2-amino-4-methylthiobutyldithio]-1-oxo pro pyl]- L-phenylalanine benzyl ester (RB 101), a systemically active prodrug, modulate CCK release in mouse brain, leading to an overall increase in the extracellular levels of CCK. This was quantified by measuring the effects of both inhibitors on the in vivo binding of [3H]propionyl-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 ([3H]pBC 264), a selective and highly potent CCK-B agonist. Thus, intracerebroventricular injection of kelatorphan produced a dose-dependent inhibition of the in vivo binding of [3H]pBC 264 with a maximal effect (40%) at 50 nmol. A similar response was observed after intravenous injection of RB 101 (40 mg/kg). The specific binding of [3H]pBC 264 was also inhibited (25%) by intravenous injection of the selective delta-opioid agonist H-Tyr-D-Cys(StBu)-Gly-Phe-Leu-Thr(OtBu)-OH (BUBUC; 2 mg/kg) but not by the mu-agonist H-Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (5 mg/kg), suggesting a preferential involvement of delta-opioid receptors in the modulation of CCK release. This was confirmed by using the selective delta-opioid antagonist naltrindole, which prevented the inhibitory effects of BUBUC and of enkephalin-degrading enzyme inhibitors on [3H]pBC 264 binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
4.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   
5.

Background

Severe asthma is a heterogeneous disease and the relationship between airway inflammation and airway remodelling is poorly understood. We sought to define sputum mediator profiles in severe asthmatics categorised by CT-determined airway geometry and sputum differential cell counts.

Methods

In a single centre cross-sectional observational study we recruited 59 subjects with severe asthma that underwent sputum induction and thoracic CT. Quantitative CT analysis of the apical segment of the right upper lobe (RB1) was performed. Forty-one mediators in sputum samples were measured of which 21 mediators that were assessable in >50% of samples were included in the analyses.

Results

Independent of airway geometry, sputum MMP9 and IL-1β were elevated in those groups with a high sputum neutrophil count while sputum ICAM was elevated in those subjects with a low sputum neutrophil count. In contrast, sputum CCL11, IL-1α and fibrinogen were different in groups stratified by both sputum neutrophil count and airway geometry. Sputum CCL11 concentration was elevated in subjects with a low sputum neutrophil count and high luminal and total RB1 area, whereas sputum IL1α was increased in subjects with a high sputum neutrophil count and low total RB1 area. Sputum fibrinogen was elevated in those subjects with RB1 luminal narrowing and in those subjects with neutrophilic inflammation without luminal narrowing.

Conclusions

We have demonstrated that sputum mediator profiling reveals a number of associations with airway geometry. Whether these findings reflect important biological phenotypes that might inform stratified medicine approaches requires further investigation.  相似文献   
6.
7.
ATG13     
《Autophagy》2013,9(6):944-956
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   
8.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
9.
P-Glycoprotein is not present in mitochondrial membranes   总被引:1,自引:0,他引:1  
Recent reports have indicated the presence of P-glycoprotein in crude mitochondrial membrane fractions, leading to the assumption that P-glycoprotein is present in mitochondrial membranes, and may be involved in transport across these membranes. To determine the validity of this claim, two cell lines overexpressing endogenous P-glycoprotein were investigated. Using various centrifugation steps, mitochondria were purified from these cells and analyzed by Western blot reaction with the anti-P-glycoprotein antibody C219 and organelle-specific antibodies. While P-glycoprotein is present in crude mitochondrial fractions, these fractions are contaminated with plasma membranes. Further purification of the mitochondria to remove plasma membranes revealed that P-glycoprotein is not expressed in mitochondria of the KB-V1 (vinblastine-resistant KB-3-1 cells) or MCF-7(ADR) (adriamycin-resistant MCF-7 cells) cell lines. To further substantiate these findings, we used confocal microscopy and the anti-P-glycoprotein antibody 17F9. This demonstrated that in intact cells, P-glycoprotein is not present in mitochondria and is primarily localized to the plasma membrane. These findings are consistent with the role of P-glycoprotein in conferring multidrug resistance by decreasing cellular drug accumulation. Therefore, contrary to previous speculation, P-glycoprotein does not confer cellular protection by residing in mitochondrial membranes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号