首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   14篇
  国内免费   48篇
  2024年   1篇
  2022年   6篇
  2021年   8篇
  2020年   11篇
  2019年   12篇
  2018年   8篇
  2017年   20篇
  2016年   14篇
  2015年   20篇
  2014年   44篇
  2013年   35篇
  2012年   48篇
  2011年   77篇
  2010年   53篇
  2009年   77篇
  2008年   91篇
  2007年   86篇
  2006年   79篇
  2005年   60篇
  2004年   74篇
  2003年   51篇
  2002年   38篇
  2001年   15篇
  2000年   33篇
  1999年   36篇
  1998年   40篇
  1997年   31篇
  1996年   31篇
  1995年   29篇
  1994年   31篇
  1993年   19篇
  1992年   10篇
  1991年   20篇
  1990年   13篇
  1989年   10篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
1.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
2.
Summary A point mutation in the -35 region of the promoter of the primer for initiation of DNA replication in the plasmid pMB1 was characterized. This base change causes a promoter up phenotype. The analysis of a second mutant obtained by site-directed mutagenesis allowed the exclusion of a role in the phenotype for the potential intrastrand secondary structure as well as for the methylation state of the DNA in the promoter region. The promoter up phenotype is concluded to be due to a change in the primary structure of the — 35 element with the consequent production of a better cluster of hydrogen bond donors and acceptors for the RNA polymerase.  相似文献   
3.
Summary Expression of the three chlorophyll a/b binding protein (cab) genes of Arabidopsis thaliana was studied in transformed tobacco tissues. For each cab gene, approximately 1000 bp of the promoter region plus a portion of the structural gene was inserted into a promoter-expression vector such that a translational fusion between the cab gene and the promoter-less chloramphenicol acetyltransferase (cat) gene was formed. The constructed molecules were introduced into either cultured tobacco cells or tobacco leaves and the promoter activity was monitored as chloramphenicol acetyltransferase activity. The light-grown tissues exhibited 1.5- to 60-fold greater promoter activity than did dark-grown tissues. Expression of the cab promoters was tissue specific: activities were much stronger in green leaves than other tissues. The cab promoters were almost equally active in transformed calli or shoots derived from leaves. However, in cultured tobacco cells, one promoter was two to three times stronger than the other two. The chimeric gene fusion, cab-cat, segregated in the F1 generation as a dominant Mendelian trait.  相似文献   
4.
Summary An experimental system to study cell cycle specific gene expression in plant cells was developed using protoplasts from tobacco cells synchronized by aphidicolin treatment. Chimeric plasmids consisting either of the chloramphenicol acetyltransferase (CAT) gene downstream of the cauliflower mosaic virus (CaMV) 35 S promoter or the nopaline synthase (nos) promoter were introduced into synchronized protoplasts of four cell cycle stages by electroporation. In the case of the CaMV 35 S promoter cyclic oscillation of CAT activity was observed which paralleled the cell cycle of the recipient cells. The peak of CAT activity was found in the S phase, while no such cyclic change was observed in the case of the nos promoter. This system clearly shows that it is feasible to search for a cell cycle specific promoter. The significance of these observations is discussed in relation to the study of plant cells.  相似文献   
5.
6.
Abstract Using promoter-probe plasmids, more than 200 promoter-containing fragments from Bacillus stearothermophilus and Bacillus subtilis were cloned in B. subtilis . Among these, 15 promoter fragments were highly temperature-dependent in activity compared to the promoter sequence (TTGAAA for the −35 region, TATAAT for the −10 region) of the amylase gene, amyT , from B. stearothermophilus . Some fragments exhibited higher promoter activities at elevated temperature (48°C), others showed higher activities at lower temperature (30°C). Active promoter fragments at higher and lower temperatures were obtained mainly from the thermophile ( B. stearothermophilus ) and the mesophile ( B. subtilis ), respectively. A promoter fragment active at high temperature was sequenced, and the feature of the putative promoter region was discussed.  相似文献   
7.
A protocol for the Agrobacterium-mediated transformation of tomatillo was developed. Up to 40 transgenic plants could be obtained in experiments using 60 cotyledon expiants. The transformed nature of the regenerated plants was confirmed by NPT II and Southern blot hybridization analysis. Using the b-glucuronidase system the tissue specific and developmental patterns of expression of the Cauliflower Mosaic Virus 35S promoter were determined in transgenic tomatillo plants. It was found that this promoter is developmentally regulated during fruit and seed formation.  相似文献   
8.
Summary Genes for the major storage protein of potato, patatin, have been mapped genetically and physically in both the potato and tomato genomes. In potato, all patatin genes detected by the cDNA clone pGM01 map to a single locus at the end of the long arm of chromosome 8. By means of pulsed field gel electrophoresis (PFGE) it was possible further to delimit this locus, containing 10–15 copies of the gene, to a maximum size of 1.4 million base pairs. Hybridizations with class-specific clones suggest that the locus is at least partially divided into domains containing the two major types of patatin genes, class I and II. In tomato, patatin-homologous sequences were found to reside at the orthologous locus at the end of chromosome 8. The approximately three copies in tomato were localized by PFGE to a single fragment of 300 kilobases. Whereas the class II-specific 5 promoter sequences reside in tomato at the same locus as the coding sequences, the single class I-specific copy of the 5 promoter sequences was localized on chromosome 3 with no coding sequence attached to it. A clone from this chromosome 3 locus of tomato was isolated and by restriction fragment length polymorphism mapping it could be further shown that a similar class I-specific sequence also exists on chromosome 3 of potato. As in tomato, this copy on chromosome 3 is not linked to a coding sequence for patatin. The results are discussed with respect to genome evolution and PFGE analysis of complex gene families.  相似文献   
9.
Summary To establish a genetic system for dissection of light-mediated signal transduction in plants, we analyzed the light wavelengths and promoter sequences responsible for the light-induced expression of the Arabidopsis thaliana chalcone synthase (CHS) promoter fused to the -glucuronidase (GUS) marker gene. Transgenic A. thaliana lines carrying 1975, 523, 186, and 17 by of the CHS promoter fused to the GUS gene were generated, and the expression of these chimeric genes was monitored in response to high intensity light in mature plants and to different wavelengths of light in seedlings. Fusion constructs containing 1975 and 523 by of CHS promoter sequence behaved identically to the endogenous CHS gene under all conditions. Expression of these constructs was induced specifically in response to high intensity white light and blue light. The response to blue light was seen in the presence of the Pfr form of phytochrome. Fusion constructs containing 186 by of promoter sequence showed reduced basal levels of expression and only weak stimulation by blue light but were induced significantly by high intensity white light. These analyses showed that the expression of the A. thaliana CHS gene is responsive to a specific blue light receptor and that sequences between — 523 and — 186 by are required for optimal basal and blue light-induced expression of this gene. The experiments lay the foundation for a simple genetic screen for light response mutants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号