首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   7篇
  国内免费   13篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   8篇
  2015年   12篇
  2014年   19篇
  2013年   20篇
  2012年   8篇
  2011年   14篇
  2010年   14篇
  2009年   23篇
  2008年   30篇
  2007年   32篇
  2006年   20篇
  2005年   11篇
  2004年   15篇
  2003年   15篇
  2002年   13篇
  2001年   5篇
  2000年   11篇
  1999年   10篇
  1997年   12篇
  1996年   4篇
  1995年   12篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   7篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有435条查询结果,搜索用时 109 毫秒
1.
Na+-dependent uptake of L-[3H]proline was measured in a crude synaptosomal preparation from the entire rat hippocampal formation or from isolated hippocampal regions. Among hippocampal regions, Na+-dependent proline uptake was significantly greater in areas CA1 and CA2-CA3-CA4 than in the fascia dentata, whereas there was no marked regional difference in the distribution of Na+-dependent gamma-[14C]aminobutyric acid ([14C]GABA) uptake. A bilateral kainic acid lesion, which destroyed most of the CA3 hippocampal pyramidal cells, reduced Na+-dependent proline uptake by an average of 41% in area CA1 and 52% in area CA2-CA3-CA4, without affecting the Na+-dependent uptake of GABA. In the fascia dentata, neither proline nor GABA uptake was significantly altered. Kinetic studies suggested that hippocampal synaptosomes take up proline by both a high-affinity (KT = 6.7 microM) and a low-affinity (KT = 290 microM) Na+-dependent process, whereas L-[14C]glutamate is taken up predominantly by a high-affinity (KT = 6.1 microM) process. A bilateral kainic acid lesion reduced the Vmax of high-affinity proline uptake by an average of 72%, the Vmax of low-affinity proline uptake by 44%, and the Vmax of high affinity glutamate uptake by 43%, without significantly changing the affinity of the transport carriers for substrate. Ipsilateral-commissural projections of CA3 hippocampal pyramidal cells appear to possess nearly as great a capacity for taking up proline as for taking up glutamate, a probable transmitter of these pathways. Therefore proline may play an important role in transmission at synapses made by the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers.  相似文献   
2.
Summary A library of Deusulfovibrio desulfuricans Norway genomic DNA was constructed in Escherichia coli with pBR322 as vector and plasmids able to complement the proA and leuB mutations of the host were screened. It was observed that all the plasmids studied were highly unstable, the insert DNA being rapidely lost under non-selective growth conditions. A 2.75 kb DNA fragment of D. desulfuricans Norway was found to complement E. coli ProA, ProB and ProC deficiencies. From the results of restriction analysis and Southern hybridization, it is proposed that the genes involved in proline and leucine biosynthesis are clustered on the chromosome of D. desulfuricans Norway.  相似文献   
3.
4.
中生植物脯氨酸含量为0.42mg/g.dw, 低于少浆旱生植物(1.73mg/g.dw)。多浆旱生植物脯氨酸含量最高(7.22mg/g.dw),为前两者的17倍和4倍,两类旱生植物在干旱条件下(非灌溉)脯氨酸含量均高于灌水处理。少浆与多浆旱生植物的光合强度(16.74,14.04CO2mg/g.dw.h)差异不大,而中生植物(37.57mg/g.dW.h)略高于多浆旱生植物(4.73CO2Mg/g.dw.h),与中生植物(7.60Co2mg/g.dw.h)接近,光合/呼吸值,少浆,多浆与中生植物分别为2.50,3.09和4.59,说明中生植物的合成明显大于消耗,季节动态中,中生植物显著高于两类旱生植物,叶绿素总量三类植物差异甚微。  相似文献   
5.
C. L. Armstrong  C. E. Green 《Planta》1985,164(2):207-214
Friable, embryogenic maize (Zea mays L.), inbred line A188, callus was established and maintained for more than one year without apparent loss of friability or embryogenic potential. Embryoid development was abundant in these cultures and plants were easily regenerated. Frequencies of friable-callus initiation and somatic-embryoid formation increased linearly with addition to N6 medium (C.C. Chu et al. 1975, Sci. Sin. [Peking] 18, 659–668) of up to 25 mM L-proline. Proline additions up to 9 mM to MS medium (inorganic elements of T. Murashige and F. Skoog 1962, Physiol. Plant. 15, 473–497, plus 0.5 mg 1-1 thiamine hydrochloride and 150 mg 1-1 L-asparagine monohydrate) did not stimulate embryoid formation. A major part of the difference between MS and N6 media could be attributed to their respective inorganic nitrogen components. L-Glutamine was not a satisfactory substitute for L-proline. Of 111 regenerated plants grown to maturity from three independent friable, embryogenic cell lines ranging in age from three to seven months, only four plants were abnormal based on morphology and pollen sterility. Seed was produced by 77% of the regenerated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS medium containing inorganic elements of Murashige and Skoog (1962), plus 0.5 ml 1-1 thiamine hydrochloride and 150 mg 1-1 L-asparagine monohydrate - N6 medium of Chu et al. (1975) Paper No. 13,904, Scientific Journal Series Minnesota Agricultural Experiment Station  相似文献   
6.
Summary This paper reports that the opaque-6 (o6) mutation of maize, which causes seedling lethality and interferes in the endosperm with the synthesis of zeins and b-32 protein, is a proline requiring mutant functionally allelic to proline-1 (pro-1). Furthermore, immunological studies on the b-32 content of ten independently originated o6 and pro-1 alleles demonstrated that four alleles contain an apparently normal b-32 protein while the others are either devoid of it or contain trace amounts of cross-reacting proteins of lower molecular weight.  相似文献   
7.
8.
The raz1 mutant of Arabidopsis thaliana (L.) Heynh. has been selected as resistant to the toxic proline analogue, azetidine-2-carboxylic acid (2AZ). Seedlings of the mutant tolerated fivefold higher concentrations of 2AZ (ED50 = 0.25 mM) than the wild-type seedlings (ED50 = 0.05 mM). The mutant gene was found to be semi-dominant and the corresponding RAZ1 locus was mapped on chromosome 5 at 69.6±1.8 cM. The resistance to 2AZ could be fully and exclusively accounted for by the lower uptake rate of the proline analogue in the mutant. The influx of L-proline in roots of wild-type seedlings could be dissected into two components: (i) a component with a high affinity and a low capacity for l-proline (K m≈20 gmM, V max≈60 nmol·(g FW)-1·h-1) and also a high affinity for L-2AZ (K i≈40 μM) and (ii) a low-affinity, high-capacity component (K m≈5 mM: V max = 1300 nmol·(g FW)-1·h-1). Clearly, the raz1 mutation affects the activity of a high-affinity transporter, because the high-affinity uptake of proline in the mutant was at least fivefold lower than in the wild-type, whereas the low-affinity uptake was unchanged.  相似文献   
9.
Abstract: A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Fscherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K+-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K+-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less d eleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号