首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   10篇
  2012年   5篇
  2011年   45篇
  2010年   2篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1997年   1篇
  1995年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有109条查询结果,搜索用时 296 毫秒
1.
研究了大麦(Hordeum vulgare L.)花药-花粉培养中不同预处理对花药内源激素(ABA,IAA,IPA)含量和过氧化物酶活性的影响。结果表明:1. 经甘露醇预处理不同天数,同一种基因型的3种内源激素的变化和不同基因型的同一种内源激素的变化规律十分相似,均是在预处理初期含量急剧增加,最高值在0.5或1 d 处。以后开始逐渐下降;最后,保持在一定的水平上。2. 在甘露醇预处理过程中,两种基因型花药过氧化物酶活性的变化规律也十分相似。在预处理前期(从开始到第3天)活性呈直线上升,第3天达到最大值。从第3天到第5天活性减弱。最后,活性又开始增强。3. 在低温预处理过程的初期(2~5 d) 两种基因型花药过氧化物酶活性都出现第一个小峰。在第14天(“Harrington”)或第21天(“Igri”)又出现第二个峰值,但后者较高。在预处理的后期(从第28天到第35天)两种基因型花药过氧化物酶的活性又呈现上升的趋势。同甘露醇预处理后期变化一致  相似文献   
2.
KCN和NaN3预处理对烟草愈伤组织抗氰呼吸的影响   总被引:3,自引:0,他引:3  
用0.5 m m ol/L KCN 或0.01 m m ol/L NaN3 预处理继代培养25 d 的“甘肃黄花烟草”(Nicotiana rustica L. cv. Gansu yellow flow er)愈伤组织对其呼吸作用有明显的影响。KCN 和NaN3 预处理12 h 可分别使愈伤组织的总呼吸速率下降12% 和17% ,细胞色素途径的实际运行量分别下降22% 和28% ;抗氰交替途径在最大容量(Valt)基本不变的情况下,实际运行量(ρ·Valt)不但未随总呼吸速率和细胞色素途径运行量的下降而降低,反而还略有上升。结果导致细胞色素途径对总呼吸的贡献下降而抗氰交替途径对总呼吸的贡献上升。KCN 预处理24 h,细胞色素途径的实际运行量虽略有回升,但仍低于对照;NaN3 预处理24 h 则使细胞色素途径运行继续下降而交替途径运行持续上升。上述结果表明,在继代培养的烟草愈伤组织中,当细胞色素主路途径被部分抑制后交替途径的电子流量明显加强,从而起着一种补偿作用  相似文献   
3.
Cellulosic fabric samples of cotton, viscose, lyocell and modal were pretreated with steam and dry heat in the range of 100–190°C. The samples were then treated with a Trichoderma reesei cellulase preparation (total culture filtrate – TC), with mechanical agitation, at a high enzyme dosage of 75% by weight of fabric, for 8 hours. Generally, viscose proved to be easily degradable, followed by cotton and modal. The degree of hydrolysis was the least for Lyocell. Dry heat pretreatments exerted a lower influence on degradation rate than steam pretreatments which showed a distinct maximum at a steam temperature of 130°C. The hydrolysis rate varied strongly depending on treatment conditions and fibre type. Water retention values in treated substrates were changed by up to 20% of initial values.  相似文献   
4.
Recently, Mucor indicus was introduced as a promising ethanol producing microorganism for fermentation of lignocellulosic hydrolysates, showing a number of advantages over Saccharomyces cerevisiae. However, high nutrient requirement is the main drawback of the fungus in efficient ethanol production from lignocelluloses. In this study, application of fungal extract as a potential nutrient source replacing all required nutrients in fermentation of wheat straw by M. indicus was investigated. Wheat straw was pretreated with N-methylmorpholine-N-oxide (NMMO) at 120 °C for 1–5 h prior to enzymatic hydrolysis. Hydrolysis yield was improved at least by 6-fold for 3 h pretreated straw compared with that of untreated one. A fungal extract was produced by autolysis of M. indicus biomass, an unavoidable byproduct of fermentation. Maximum free amino nitrogen (2.04 g/L), phosphorus (1.50 g/L), and total nitrogen (4.47 g/L) as well as potassium, magnesium, and calcium in the fungal extract were obtained by autolysis of the biomass at 50 °C and pH 5.0. The fungal extract as a nutrient-rich supplement substituted yeast extract and all other required minerals in fermentation and enhanced the ethanol yield up to 92.1% of the theoretical yield. Besides, appreciate amounts of chitosan were produced as another valuable product of the autolysis.  相似文献   
5.
Different morphologies of Mucor hiemalis were induced and used for the production of ethanol and biomass from rice straw through a separate hydrolysis and fermentation process. The yield of enzymatic hydrolysis was improved from 40.4% for the untreated straw to 80–93% by employing sodium hydroxide and concentrated phosphoric acid pretreatments with or without ultrasonication. The best hydrolysis performance was achieved after pretreatment by sodium hydroxide assisted with ultrasonication. The ethanol yields from the hydrolysates were 0.39–0.44 g/g depending on the pretreatment method and the fungus morphology. The yeast‐like form of the fungus showed faster glucose assimilation and slightly higher ethanol yield compared to the other morphologies. The biomass yield of mostly yeast‐like cells was more than the other morphologies (0.202–0.282 g/g glucose). Moreover, the biomass of the yeast‐like cells had more protein content (46.7–52.4 %) compared to filamentous cells (37.7–46.3 %). The cell wall, alkali‐insoluble material (AIM) of the biomass, represented 16.3–20.1% of the biomass. On average, total chitin‐chitosan content of AIM of the biomass of purely filamentous, mostly filamentous, mostly yeast‐like, and purely yeast‐like forms of the fungus was 0.460, 0.373, 0.330, and 0.336 g/g AIM of the biomass, respectively.  相似文献   
6.
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.  相似文献   
7.
Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons. Despite its higher cellulose content per dry mass, Dacotah switchgrass harvested after wintering consistently gave a lower saccharification yield than the other two varieties harvested in the fall. The recalcitrance of upland cultivars and over-wintered switchgrass may require more severe pretreatment conditions. We discuss the key features of different pretreatment technologies and differences in switchgrass cultivars and harvest seasons on hydrolysis performance for the applied pretreatment methods.  相似文献   
8.
Differential Scanning Calorimetry, Dynamic Mechanical Thermal Analysis, gravimetric and chemical techniques have been used to study hydrothermal reactions of straw biomass. Exothermic degradation initiates above 195 °C, due to breakdown of the xylose ring from hemicellulose, which may be similar to reactions occurring during the early stage pyrolysis of dry biomass, though activated at lower temperature through water mediation. The temperature and magnitude of the exotherm reduce with increasing acid concentration, suggesting a reduction in activation energy and a change in the balance of reaction pathways. The presence of xylan oligomers in auto-catalytic hydrolysates is believed to be due to a low rate constant rather than a specific reaction mechanism. The loss of the lignin glass transition indicates that the lignin phase is reorganised under high temperature auto-catalytic conditions, but remains partially intact under lower temperature acid-catalytic conditions. This shows that lignin degradation reactions are activated thermally but are not effectively catalysed by aqueous acid.  相似文献   
9.
Twin screw extrusion based pretreatment of biomass is an attractive option due to its flexibility to carry out chemical reactions under relatively high stresses, temperatures and pressures. However, extrusion processes are rarely utilized in biomass pretreatment because such processing is constrained by rheological behavior of typical biomass suspensions. Without the manipulation of their rheological behavior, biomass suspensions become unprocessable within the extruder at modest biomass concentrations. Here it is demonstrated that gelation agents can render biomass suspensions processable. Specifically, carboxy methyl cellulose, CMC, could be used in conjunction with alkaline pretreatment of hardwood-type biomass and enabled separation of lignin from cellulose fibers. Furthermore, recycled black liquor, obtained upon pretreatment, was determined to be as effective as CMC for rendering biomass suspensions flowable by again facilitating the concomitant application of high shearing stresses and chemical treatment for the pretreatment of the biomass in the twin screw extruder.  相似文献   
10.
Cheng CL  Lo YC  Lee KS  Lee DJ  Lin CY  Chang JS 《Bioresource technology》2011,102(18):8514-8523
Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号