首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   10篇
  国内免费   7篇
  2023年   5篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1982年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
1.
2.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   
3.
Eicosapentaenoic acid (EPA, 20:5n-3) was obtained from the microalgaPhaeodactylum tricornutum following a three-step process: fatty acid extraction by direct saponification of wet biomass, polyunsaturated fatty acid (PUFA) concentration by formation of urea inclusion compounds and EPA isolation by preparative HPLC. Direct saponification of wet biomass was carried out with KOH-ethanol (96% v:v) (1 h, 60 °C), extracting 91% of the EPA. PUFAs were concentrated by the urea method with an urea/fatty acid ratio of 4:1 at a crystallization temperature of 28 °C using methanol as the urea solvent. An EPA concentration ratio of 1.5 (55.2/36.3) and recovery of 79% were obtained. This PUFA concentrate was used to obtain 95.8% pure EPA by preparative HPLC, using a reverse-phase column (C18, 4.7 cm i.d. × 30 cm) and methanol-water (1% AcH) 80:20 w/w as the mobile phase. Ninety-seven per cent of EPA loaded was recovered and 70% EPA present in theP. tricornutum biomass was recovered in a highly pure form by means of this three-step downstream processing. In each of the HPLC preparative runs, 635 mg PUFA concentrate were loaded, obtaining 326 mg of a highly concentrated EPA fraction (2.46 g d–1). Finally, a preliminary cost statement has been calculated.  相似文献   
4.
Total DNA was isolated from 10 species of microalgae, including representatives of the Chlorophyceae (Chlorella ellipsoidea, Chlamydomonas reinhardtii, and Monoraphidium minutum), Bacillariophyceae (Cyclotella cryptica, Navicula saprophila, Nitzschia pusilla, and Phaeodactylum tricornutum), Charophyceae (Stichococcus sp.), Dinophyceae (Crypthecodinium cohnii), and Prasinophyceae (Tetraselmis suecica). Control samples of Escherichia coli and calf thymus DNA were also analyzed. The nucleoside base composition of each DNA sample was determined by reversed-phase high performance liquid chromatography. All samples contained 5-methyldeoxycytidine, although at widely varying levels. In M. minutum, about one-third of the cytidine residues were methylated. Restriction analysis supported this high degree of methylation in M. minutum and suggested that methylation is biased toward 5′-CG dinucleotides. The guanosine + cytosine (GC) contents of the green algae were, with the exception of Stichococcus sp., consistently higher than those of the diatoms. Monoraphidium minutum exhibited an extremely high GC content of 71%. Such a value is rare among eukaryotic organisms and might indicate an unusual codon usage. This work is important for developing strategies for transformation and gene cloning in these algae.  相似文献   
5.
The influence of temperature on the biochemical composition of eight species of marine phytoplankton was investigated. Thalassiosira pseudonana Hasle and Heim-dal, Phaeodactylum tricornutum Bohlin and, Pavlova lutheri Droop (three of eight species studied) had minimum values of carbon and nitrogen quotas at intermediate temperatures resulting in a broad U-shaped response in quotas over the temperature range of 10 to 25°C. Protein per cell also had minimum values at intermediate temperatures for six species. For T. pseudonana, P. tricornutum, and P. lutheri, patterns of variation in carbon, nitrogen, and protein quotas as a function of temperature were similar. Over all species, lipid and carbohydrate per cell showed no consistent trends with temperature. Only chlorophyll a quotas and the carbon: chlorophyll a ratios (θ) showed consistent trends across all species. Chlorophyll a quotas were always lower at 10°C than at 25°C. Carbon: chlorophyll a ratios (θ) were always higher at 10°C than at 25°C. We suggest that although θ consistently increases at lower temperatures, the relationship between temperature and θ ranges from linear to exponential and is species specific. Accordingly, the interspecific variance in θ that results from species showing a range of possible responses to temperature increases as temperature declines and reaches a maximum at low temperatures. High photon flux densities appear to increase the potential interspecific variance in the carbon: chlorophyll a ratio and therefore exacerbate these trends.  相似文献   
6.
The consumption of inorganic macronutrients (NO3?+ NO2?, NH4+, and PO4?3) and the composition of intra- and extracellular dissolved free amino acid pools (IDFAA and EDFAA, respectively) were determined in continuous-reservoir batch dialysis cultures of the marine diatom Phaeodactylum tricornutum Bohlin maintained on unenriched natural seawater as a growth medium. Nutrient diffusion (Nd), which equals the nutrient uptake of the culture, increased with the cell density and the age of the culture. A concentration of 6.77 × 107 cells · mL?1 was obtained in stationary phase, which coincided with the NO3?+ NO2? diffusion limit (Ndmax) of the dialysis apparatus. The Ndmax for NH4+ occurred much earlier, at the end of exponential growth, whereas Ndmax for PO4?3 was not attained during the growth cycle of the culture, even in early stationary phase. A significant depletion (77%) of the IDFAA pool during exponential phase was followed by a reestablishment–to approximately 60% of the initial level–of internal pools during linear and stationary growth phases. This recovery occurred during the illuminated portion of the photoperiod (12:12 h LD) and involved principally the amino acids GLN, GLU, β-GLU, and ASN. The recovery of GLN and ASN levels was particularly significant, because the intracellular concentrations of these amino acids were higher at the end of the growth cycle than before. The EDFAA pool was generally dominated by the amino acids SER and GLY+THR; however, during active growth, ORN and LYS often constituted an important fraction. The EDFAA concentration increased until linear growth phase was reached, during which a higher concentration of total free amino acids was attained in darkness than under illumination. The EDFAA component diminished afterward, and in stationary phase this fraction returned to concentrations equivalent to those observed at the beginning of the growth cycle. The variations in EDFAA concentrations were expressed by a pronounced decrease in the cellular excretion of amino acids with increasing cell density. These cellular responses of Phaeodactylum tricornutum in dense culture, specifically the regulation of amino acid excretion and intracellular pool size, may affect the N-conversion coefficient (YN). Consequently, by prolonging the linear phase of growth and reducing the concentration of autoinhibitory metabolites by diffusion, a markedly enhanced final cell density can be achieved in cultures grown on natural unenriched seawater.  相似文献   
7.
The marine microalga Phaeodactylum tricornutum was cultured semi-continuously with the soluble fractions of wheat, rye and boiled potato flours. Fifteen percent of the culture volume was renewed every 3 d. The cell productivities were 0.9×109 cells/l/d, 1.1×109 cells/l/d and 2.6×109 cells/l/d for wheat, rye and potato respectively. The productivity of the autotrophic control was 1.0×109 cell/l/d. When a soluble fraction of raw potato was added, the productivity was enhanced to 4.1×109 cells/l/d, 2.4 times higher than the autotrophic culture. The high productivity of P. tricornutum with the soluble fractions of Solanum tuberosum suggests its usefulness as a source of nutrients for the production of microalgal biomass.  相似文献   
8.
Cultures of Isochrysis galbana Parks and Phaeodactylum tricornutum Bohlin were grown in iron-limited chemostats. With increasing iron deficiency, photosynthetic rate per cell and assimilation number decreased. The pattern of photosynthesis was also altered; in Fe deficient cells the proportion of 14C fixed in glycine and serine decreased with an accompanying increase into alanine after 3 min assimilation. Although there was no significant effect of Fe deficiency on the proportion of 14C incorporated into total amino acids and amides, the percentage of total 14C fixed in protein increased with increasing Fe deficiency. Cellular levels of chlorophyll a, carotenoids, cytochromes and protein also decreased with increasing Fe deficiency. However, the reduction in chlorophyll a/cell was not as great as that of cytochrorne f1 and Fe deficient cells therefore showed a marked increase in chlorophyll a:cytochrorne f1 ratio.  相似文献   
9.
Nitrate-cultured cells of Phaeodactylum tricornutum Bohlin lack the ability to take up guanine but can do so after a period of nitrogen deprivation, i.e. photosynthesis in nitrogen-free medium. Maximum rate of uptake occurred after 24 h of nitrogen deprivation. The development of ability to take up guanine required CO2 fixation and was prevented by cycloheximide, ammonium or nitrate. The guanine taken up accummulated in the cells almost entirely as a compound which is probably methylated hypoxanthine. Guanine uptake was dependent upon metabolism and exhibited Michaelis-Menten like kinetics with a half-saturation value of 0.48 ± 0.05 μM guanine and a maximum uptake rate for guanine of ca. 200 nmol · 10?8 cells · h?1. Rate of uptake increased hyperbolically with Na+ concentration, with 8.25 mM Na+ supporting half-maximal rate, and it was inhibited by K+ ions.  相似文献   
10.
Phaeodactylum tricornutum is a lipid‐rich marine diatom that contains a high level of omega‐3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA). In an effort to reduce costs for large‐scale cultivation of this microalga, this study first established a New BBM medium (0.3 x strength BBM with only 3% of the initial phosphate level) to replace the traditional F/2 medium. Phaeodactylum tricornutum could grow in extremely low phosphate concentrations (25 µM), without compromising the EPA content. In the presence of sea salts, silicate addition was not necessary for high rate growth, high EPA content, or lipid accumulation in this species. Using urea as the sole nitrogen source tended to increase EPA contents per dry biomass (by 24.7%) while not affecting growth performance. The use of sea salts, rather than just sodium chloride, led to significantly improved biomass yields (20% increase) and EPA contents of total fatty acid (46–52% increase), most likely because it supplied sufficient essential elements such as magnesium. A salinity level of 35 led to significantly higher biomass yields compared with 20, but salinity had no significant influence on EPA content. EPA became the dominant fatty acid with average levels of 51.8% of total fatty acids during the exponential growth phase at 20 ppt in New BBM medium with sea salts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号