首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   13篇
  2014年   18篇
  2013年   11篇
  2012年   11篇
  2011年   23篇
  2010年   6篇
  2009年   10篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
1.
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.  相似文献   
2.
Peroxiredoxins (Prxs) detoxify peroxides and modulate H2O2-mediated cell signaling in normal and numerous pathophysiological contexts. The typical 2-Cys subclass of Prxs (human Prx1–4) utilizes a Cys sulfenic acid (Cys-SOH) intermediate and disulfide bond formation across two subunits during catalysis. During oxidative stress, however, the Cys-SOH moiety can react with H2O2 to form Cys sulfinic acid (Cys-SO2H), resulting in inactivation. The propensity to hyperoxidize varies greatly among human Prxs. Mitochondrial Prx3 is the most resistant to inactivation, but the molecular basis for this property is unknown. A panel of chimeras and Cys variants of Prx2 and Prx3 were treated with H2O2 and analyzed by rapid chemical quench and time-resolved electrospray ionization-TOF mass spectrometry. The latter utilized an on-line rapid-mixing setup to collect data on the low seconds time scale. These approaches enabled the first direct observation of the Cys-SOH intermediate and a putative Cys sulfenamide (Cys-SN) for Prx2 and Prx3 during catalysis. The substitution of C-terminal residues in Prx3, residues adjacent to the resolving Cys residue, resulted in a Prx2-like protein with increased sensitivity to hyperoxidation and decreased ability to form the intermolecular disulfide bond between subunits. The corresponding Prx2 chimera became more resistant to hyperoxidation. Taken together, the results of this study support that the kinetics of the Cys-SOH intermediate is key to determine the probability of hyperoxidation or disulfide formation. Given the oxidizing environment of the mitochondrion, it makes sense that Prx3 would favor disulfide bond formation as a protection mechanism against hyperoxidation and inactivation.  相似文献   
3.
The dynamics of redox metabolism necessitate cellular strategies for sensing redox changes and for responding to them. A common mechanism for receiving and transmitting redox changes is via reversible modifications of protein cysteine residues. A plethora of cysteine modifications have been described, including sulfenylation, glutathionylation, and disulfide formation. These post-translational modifications have the potential to alter protein structure and/or function and to modulate cellular processes ranging from division to death and from circadian rhythms to secretion. The focus of this thematic minireview series is cysteine modifications in response to reactive oxygen and nitrogen species.  相似文献   
4.
5.
Expression and regulation of peroxiredoxin 5 in human osteoarthritis   总被引:8,自引:0,他引:8  
Reactive oxygen species (ROS) are implicated in the pathogenesis of osteoarthritis (OA). However, little is known about the antioxidant defence system in articular cartilage. We investigated the expression and regulation of peroxiredoxin 5 (PRDX5), a newly discovered thioredoxin peroxidase, in human normal and osteoarthritic cartilage. Our results show that human cartilage constitutively expresses PRDX5. Moreover, the expression is up-regulated in OA. Inflammatory cytokines tumour necrosis factor alpha and interleukin 1 beta contribute to this up-regulation by increasing intracellular ROS production. The present study suggests that PRDX5 may play a protective role against oxidative stress in human cartilage.  相似文献   
6.
It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer. [BMB Reports 2015; 48(10): 539-540]  相似文献   
7.
《FEBS letters》2014,588(23):4342-4347
In addition to the standard NADPH thioredoxin reductases (NTRs), plants hold a plastidic NTR (NTRC), with a thioredoxin module fused at the C-terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs). The interaction of NTRC and chloroplastic thioredoxin x with 2-Cys Prxs has been confirmed in vivo, by bimolecular fluorescence complementation (BiFC) assays, and in vitro, by isothermal titration calorimetry (ITC) experiments. In comparison with thioredoxin x, NTRC interacts with 2-Cys Prx with higher affinity, both the thioredoxin and NTR domains of NTRC contributing significantly to this interaction, as demonstrated by using the NTR and thioredoxin modules of the enzyme expressed separately. The presence of the thioredoxin domain seems to prevent the interaction of NTRC with thioredoxin x.  相似文献   
8.
Cilia/flagella are evolutionarily conserved cellular organelles. In this study, we demonstrated that Dunaliella salina Peroxiredoxin 1 (DsPrdx1) localized to the flagella and basal bodies, and was involved in flagellar disassembly. The link between DsPrdx1 and flagella of Dunaliella salina (D. salina) encouraged us to explore the function of its human homologue, Homo sapiens Peroxiredoxin 1 (HsPrdx1) in development and physiology. Our results showed that HsPrdx1 was overexpressed, and cilia were lost in esophageal squamous cell carcinoma (ESCC) cells compared with the non-cancerous esophageal epithelial cells Het-1A. Furthermore, when HsPrdx1 was knocked down by short hairpin RNA (shRNA) lentivirus in ESCC cells, the phenotype of cilia lost can be reversed, and the expression levels of tumor suppressor genes LKB1 and p-AMPK were increased, and the activity of the oncogene Aurora A was inhibited compared with those in cells transfected with scrambe-shRNA lentivirus. These findings firstly showed that Prdx1 is involved in disassembly of flagella and cilia, and suggested that the abnormal expression of the cilia-related gene including Prdx1 may affect both ciliogenesis and cancernogenesis.  相似文献   
9.
Peroxiredoxin III (Prdx III), the mitochondrial peroxidase, was preferentially expressed in murine erythroleukemia (MEL) cells. However, the mechanisms by which Prdx III regulates erythroid differentiation are unknown. In this study, K562 cells were differentiated by Ara-C treatment, and Prdx III was dramatically increased until day 5. We also investigated Prdx III expression pattern on in vitro erythropoiesis of human CD34(+) cells. When human CD34(+) cells became proerythrocyte on day 7, Prdx III was diminished, and then augmented on day 12. We established the stable sublines of Prdx III overexpression (O/E), and dominant-negative (D/N). The intracellular ROS level of Prdx III O/E cell line was lower than D/N stable cell lines. Moreover, Prdx III O/E cell line was placed in G1-arrest, but not D/N cell lines. Finally, the expression level of beta-globin and GATA-1 was dramatically increased in Prdx III O/E cell line.  相似文献   
10.
Antioxidant defenses include a group of ubiquitous, non-heme peroxidases, designated the peroxiredoxins, which rely on an activated cysteine residue at their active site to catalyze the reduction of hydrogen peroxide, organic hydroperoxides, and peroxynitrite. In the typical 2-Cys peroxiredoxins, a second cysteinyl residue, termed the resolving cysteine, is also involved in intersubunit disulfide bond formation during the course of catalysis by these enzymes. Many bacteria also express a flavoprotein, AhpF, which acts as a dedicated disulfide reductase to recycle the bacterial peroxiredoxin, AhpC, during catalysis. Mechanistic and structural studies of these bacterial proteins have shed light on the linkage between redox state, oligomeric state, and peroxidase activity for the peroxiredoxins, and on the conformational changes accompanying catalysis by both proteins. In addition, these studies have highlighted the dual roles that the oxidized cysteinyl species, cysteine sulfenic acid, can play in eukaryotic peroxiredoxins, acting as a catalytic intermediate in the peroxidase activity, and as a redox sensor in regulating hydrogen peroxide-mediated cell signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号