首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
Bacterial crystalline Fe(III) oxide reduction has the potential to significantly influence the biogeochemistry of anaerobic sedimentary environments where crystalline Fe(III) oxides are abundant relative to poorly crystalline (amorphous) phases. A review of published data on solid-phase Fe(III) abundance and speciation indicates that crystalline Fe(III) oxides are frequently 2- to S 10-fold more abundant than amorphous Fe(III) oxides in shallow subsurface sediments not yet subjected to microbial Fe(III) oxide reduction activity. Incubation experiments with coastal plain aquifer sediments demonstrated that crystalline Fe(III) oxide reduction can contribute substantially to Fe(II) production in the presence of added electron donors and nutrients. Controls on crystalline Fe(III) oxide reduction are therefore an important consideration in relation to the biogeochemical impacts of bacterial Fe(III) oxide reduction in subsurface environments. In this paper, the influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides is reviewed and analyzed in light of new experiments conducted with the acetate-oxidizing, Fe(III)-reducing bacterium (FeRB) Geobacter metallireducens . Previous experiments with Shewanella algae strain BrY indicated that adsorption and/or surface precipitation of Fe(II) on Fe(III) oxide and FeRB cell surfaces is primarily responsible for cessation of goethite ( f -FeOOH) reduction activity after only a relatively small fraction (generally < 10%) of the oxide is reduced. Similar conclusions are drawn from analogous studies with G. metallireducens . Although accumulation of aqueous Fe(II) has the potential to impose thermodynamic constraints on the extent of crystalline Fe(III) oxide reduction, our data on bacterial goethite reduction suggest that this phenomenon cannot universally explain the low microbial reducibility of this mineral. Experiments examining the influence of exogenous Fe(II) (20 mM FeCl 2 ) on soluble Fe(III)-citrate reduction by G. metallireducens and S. algae showed that high concentrations of Fe(II) did not inhibit Fe(III)-citrate reduction by freshly grown cells, which indicates that surface-bound Fe(II) does not inhibit Fe(III) reduction through a classical end-product enzyme inhibition mechanism. However, prolonged exposure of G. metallireducens and S. algae cells to high concentrations of soluble Fe(II) did cause inhibition of soluble Fe(III) reduction. These findings, together with recent documentation of the formation of Fe(II) surface precipitates on FeRB in Fe(III)-citrate medium, provide further evidence for the impact of Fe(II) sorption by FeRB on enzymatic Fe(III) reduction. Two different, but not mutually exclusive, mechanisms whereby accumulation of Fe(II) coatings on Fe(III) oxide and FeRB surfaces may lead to inhibition of enzymatic Fe(III) oxide reduction activity (in the absence of soluble electron shuttles and/or Fe(III) chelators) are identified and discussed in relation to recent experimental work and theoretical considerations.  相似文献   
2.
目的:微生物湿法冶金技术是一种有效回收难处理常规选矿方法难以处理的复杂矿中金属的方法,本研究旨在利用该工艺处理国内某低品位(0.67%)难选铜矿,提高铜的回收率。方法:首先,从某矿山富集得到中温富集物,其次,对该矿石进行生物浸出,同时优化浸出过程工艺参数。结果:所富集得到的中温富集物最适生长温度为30℃,最适pH值为1.9。在摇瓶中浸出难选铜矿时,最佳摇床转速为180 r/min,最优充气强度为360 mL/min,10天内难选铜矿中铜的浸出率可以达到92%。结论:该中温富集物具有较好地浸出难选铜矿的能力。  相似文献   
3.
A Cr adhesion layer inserted between Ag nanoparticles and a glass substrate, for the purpose of improving the adhesion of Ag nanoparticles to glass, was observed to cause an abnormal peak shift of extinction spectra in non-specific reactions. The undesired peak shift misleads molecule detection in non-specific reactions. To solve this issue, a practical technique using n-propyl-trimethoxysilane-based passivation for the detection of amyloid-derived diffusible ligands was investigated as a route to eliminate the abnormal peak shifting observed in the non-specific reactions. To evaluate this passivation technique, localized surface plasmon resonance immunoassay experiments were conducted. Experimental results derived with and without the passivation process were investigated as a basis for comparative analysis. Our experimental results demonstrate that this passivation technique effectively eliminates the observed peak shift originating from the Cr adhesion layer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号