首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   24篇
  国内免费   1篇
  2021年   1篇
  2019年   8篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   21篇
  2013年   11篇
  2012年   4篇
  2011年   17篇
  2010年   40篇
  2009年   44篇
  2008年   26篇
  2007年   41篇
  2006年   31篇
  2005年   27篇
  2004年   10篇
  2003年   10篇
  2002年   2篇
  1996年   1篇
  1984年   3篇
  1983年   5篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
1.
The polymorphic phase behaviour of dilinoleoylphosphatidyethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) is investigated by freeze-fracture electron microscopy, X-ray diffraction and 31P-NMR. The structures at 5% or less POPC are predominantly inverted hexagonal (HII), whereas at 15% or more POPC, the structure is mostly bilayer (L), interrupted by defects (lipidic particles). A cubic phase structure is observed in the transition range between H and L phases; the cubic arrangement deteriorates at higher temperatures into an amorphous aggregate of spherical units. Both cubic and amorphous structures contribute to the isotropic 31P resonance, with no preference for PC or PE partitioning in the isotropic motion as observed by high resolution NMR. The existence of the cubic phase seems to depend critially on the homogeneity and the degree unsaturation of the phospholipids.  相似文献   
2.
Some properties of monolayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG) alone or of POPG in mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) have been measured near 35°C during dynamic compression and expansion at 3.6 cm2·s?1. (2) The mean values of minimum surface tension (corresponding to maximum surface pressure) which could be obtained with pure POPG monolayers at high compression ranged from 15 to 18 mN·m?1 in the presence of Na+, Ca2+ or low pH (2.0) in the subphase. (3) The presence of Ca2+ or low pH in the subphase increased the collapse plateau ratios obtained on cyclic compression. This might represent enhanced respreading into the monolayer of pure POPG from a collapsed form during reexpansion of the surface. (4) Monolayers containing 10% or 30% POPG and 90% or 70% DPPC could be compressed to surface tensions approaching zero. (5) In such mixed monolayers, 10% or 30% POPG did not appear to enhance respreading, as measured by collapse plateau ratios, in the presence of Na+ or Ca2+ in the subphase.  相似文献   
3.
Polynuclear aromatic hydrocarbons (PAH), some of which are potent carcinogens, are common environmental pollutants. The transport processes for these hydrophobic compounds into cells and between intracellular membranes are diverse and are not well understood. A common mechanism of transport is by spontaneous desorption and transfer through the aqueous phase. From the partitioning parameters, we have inferred that the rate limiting step involves solvation of the transfer species in the interfacial water at the phospholipid surface. Transfer of 10 PAH (pyrene, 3,4-benzophenanthrene, triphenylene, chrysene, 1,2-benzanthracene, 1,1'-binaphthyl, 9-phenylanthracene, 2,2'-binaphthyl, m-tetraphenyl and 1,3,5-triphenylbenzene) out of phosphatidylcholine vesicles has been examined. Our results show that the molecular volume of the PAH is a rate-determining factor. Moreover, high performance liquid chromatography (HPLC) data confirms the hypothesis that the rate of transfer is correlated with the size of the molecule and with the partitioning of the molecule between a polar and hydrocarbon phase. The kinetics and characteristics of the spontaneous transfer of carcinogens are likely to have a major impact on the competitive processes of PAH metabolism within cells.  相似文献   
4.
Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2.  相似文献   
5.
The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography–mass spectrometry analysis of peptide–lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH 7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3 h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins.  相似文献   
6.
The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein’s polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development of Huntington’s disease. This huntingtin 1–17 domain is on the one hand known to markedly increase polyglutamine aggregation rates and on the other hand has been shown to be involved in cellular membrane interactions. Here, we determined the high-resolution structure of huntingtin 1–17 in dodecyl phosphocholine micelles and the topology of its helical domain in oriented phosphatidylcholine bilayers. Using two-dimensional solution NMR spectroscopy the low-energy conformations of the polypeptide were identified in the presence of dodecyl phosphocholine detergent micelles. In a next step a set of four solid-state NMR angular restraints was obtained from huntingtin 1–17 labeled with 15N and 2H at selected sites. Of the micellar ensemble of helical conformations only a limited set agrees in quantitative detail with the solid-state angular restraints of huntingtin 1–17 obtained in supported planar lipid bilayers. Thereby, the solid-state NMR data were used to further refine the domain structure in phospholipid bilayers. At the same time its membrane topology was determined and different motional regimes of this membrane-associated domain were explored. The pronounced structural transitions of huntingtin 1–17 upon membrane-association result in a α-helical conformation from K6 to F17, i.e., up to the very start of the polyglutamine tract. This amphipathic helix is aligned nearly parallel to the membrane surface (tilt angle ∼77°) and is characterized by a hydrophobic ridge on one side and an alternation of cationic and anionic residues that run along the hydrophilic face of the helix. This arrangement facilitates electrostatic interactions between huntingtin 1–17 domains and possibly with the proximal polyglutamine tract.  相似文献   
7.
Six selected β-blocker drugs (alprenolol, atenolol, metoprolol, nadolol, pindolol and propranolol) passing across 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer were studied using all-atom molecular dynamics simulation. The free energy profiles can be divided into two groups, according to their shapes: the free energy curve of group one (atenolol, nadolol and pindolol) has an obvious minimum while that of the other group (propranolol, metoprolol and alprenolol) is flat inside membrane. Energy analysis shows that electrostatic interaction plays an important role for the first group drugs. The hydrogen bond analysis results also certify that the first group drugs form more hydrogen bonds than the other β-blockers. The calculated permeability sequence agrees with the experimental ones. Our calculation suggests that the permeability model using potential of mean force (PMF) method can be also applied to chemically similar compounds besides chemically diverse compounds.  相似文献   
8.
Ge M  Freed JH 《Biophysical journal》2003,85(6):4023-4040
The relationship between bilayer hydration and the dynamic structure of headgroups and interbilayer water in multilamellar vesicles is investigated by electron spin resonance methods. Temperature variations of the order parameter of a headgroup spin label DPP-Tempo in DOPC in excess water and partially dehydrated (10 wt % water) show a cusp-like pattern around the main phase transition, Tc. This pattern is similar to those of temperature variations of the quadrupolar splitting of interbilayer D2O in PC and PE bilayers previously measured by 2H NMR, indicating that the ordering of the headgroup and the interbilayer water are correlated. The cusp-like pattern of these and other physical properties around Tc are suggestive of quasicritical fluctuations. Also, an increase (a decrease) in ordering of DPP-Tempo is correlated with water moving out of (into) interbilayer region into (from) the bulk water phase near the freezing point, Tf. Addition of cholesterol lowers Tf, which remains the point of increasing headgroup ordering. Using the small water-soluble spin probe 4-PT, it is shown that the ordering of interbilayer water increases with bilayer dehydration. It is suggested that increased ordering in the interbilayer region, implying a lowering of entropy, will itself lead to further dehydration of the interbilayer region until its lowered pressure resists further flow, i.e., an osmotic phenomenon.  相似文献   
9.
Fructans are a group of fructose-based oligo- and polysaccharides, which appear to be involved in membrane preservation during dehydration by interacting with the membrane lipids. To get further understanding of the protective mechanism, the consequences of the fructan-membrane lipid interaction for the molecular organization and dynamics in the dry state were studied. POPC and DMPC were investigated in the dry state by (2)H, (31)P NMR, and Fourier transform infrared spectroscopy using two types of fructan and dextran. The order-disorder transition temperature of dry POPC was reduced by 70 degrees C in the presence of fructan. Fructan increased the mobility of the acyl chains, but immobilized the lipid headgroup region. Most likely, fructans insert between the headgroups of lipids, thereby spacing the acyl chains. This results in a much lower phase transition temperature. The headgroup is immobilized by the interaction with fructan. The location of the interaction with the lipid headgroup is different for the inulin-type fructan compared to the levan-type fructan, since inulin shows interaction with the lipid phosphate group, whereas levan does not. Dextran did not influence the phase transition temperature of dry POPC showing that reduction of this temperature is not a general property of polysaccharides.  相似文献   
10.
C5a receptor (C5aR) is one of the major chemoattractant receptors of the druggable proteome that binds C5a, the proinflammatory polypeptide of complement cascade, triggering inflammation and SEPSIS. Here, we report the model structures of C5aR in both inactive and peptide agonist (YSFKPMPLaR; a=D-Ala) bound meta-active state. Assembled in CYANA and evolved over molecular dynamics (MD) in POPC bilayer, the inactive C5aR demonstrates a topologically unique compact heptahelical bundle topology harboring a β-hairpin in extracellular loop 2 (ECL2), derived from the atomistic folding simulations. The peptide agonist bound meta-active C5aR deciphers the “site2” at an atomistic resolution in the extracellular surface (ECS), in contrast to the previously hypothesized inter-helical crevice. With estimated Ki≈2.75 μM, the meta-active C5aR excellently rationalizes the IC50 (0.1–13 μM) and EC50 (0.01–6 μM) values, displayed by the peptide agonist in several signaling studies. Moreover, with Ki≈5.3×105 μM, the “site2” also illustrates selectivity, by discriminating the stereochemical mutant peptide (YSFkPMPLaR; k=D-Lys), known to be inert toward C5aR, up to 1 mM concentration. Topologically juxtaposed between the structures of rhodopsin and CXCR1, the C5aR models also display excellent structural correlations with the other G-protein coupled receptors (GPCRs). The models elaborated in the current study unravel many important structural insights previously not known for regulating the agonist binding and activation mechanism of C5aR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号