首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   19篇
  国内免费   4篇
  2023年   3篇
  2022年   2篇
  2021年   22篇
  2020年   17篇
  2019年   14篇
  2018年   25篇
  2017年   6篇
  2016年   8篇
  2015年   32篇
  2014年   81篇
  2013年   60篇
  2012年   65篇
  2011年   104篇
  2010年   60篇
  2009年   33篇
  2008年   43篇
  2007年   50篇
  2006年   56篇
  2005年   39篇
  2004年   23篇
  2003年   22篇
  2002年   16篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1984年   1篇
排序方式: 共有824条查询结果,搜索用时 31 毫秒
1.
Reconstituted Na+,K+-ATPase from either pig kidney or shark rectal glands was phosphorylated by cAMP dependent protein kinase, PKA. The stoichiometry was 0.9 mole Pi/mole -subunit in the pig kidney enzyme and 0.2 mol Pi/mol -subunit in the shark enzyme. In shark Na+,K+-ATPase PKA phosphorylation increased the maximum hydrolytic activity for cytoplasmic Na+ activation and extracellular K+ activation without affecting the apparent Km values. In contrast, no significant functional effect after PKA phosphorylation was observed in pig kidney Na+,K+-ATPase.  相似文献   
2.
The level of topoisomerase I mRNA was measured in cells of two mouse lymphoma (LY) sublines treated with db-cAMP. A transient increase of the level was observed to be of about 60% of the basic level and to have maximum after the 3 h treatment of LY-S cells. The increase in LY-R subline was two-fold lower. The activity of PKA in a cytosol fraction of LY-S cells was 1.75 times higher than that in LY-R cells. The activity of PKA in membranes and nuclear fraction did not differ significantly in both cell types. When the activity of PKA in LY-S cells was inhibited with H8, no increase of the level of topoisomerase I mRNA was observed upon db-cAMP treatment of cells. We suggest that the activity of PKA in the cytosol controls the expression of topoisomerase I gene in LY cells at high concentration of cAMP.Abbreviations db-cAMP dibutyryl-cAMP - H8 N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide - LY mouse L5178Y lymphoma - PKA protein kinase A - topo I topoisomerase I  相似文献   
3.
In addition to itsintra-cellular functions, cAMP-dependent protein kinase (PKA) may well have anextra-cellular regulatory role in blood. This suggestion is based on the following experimental findings: (a) Physiological stimulation of blood platelets brings about a specific release of PKA, together with its co-substrates ATP and Mg++; (b) In human serum, an endogenous phosphorylation of one protein (p75, Mr 75 kDa) occurs; this phosphorylation is enhanced by addition of cAMP and blocked by the Walsh-Krebs specific PKA inhibitor; (c) No endogenous phosphorylation of p75 occurs in human plasma devoid of platelets, but the selective labeling of p75 can be reproduced by adding to plasma the pure catalytic subunit of PKA; (d) p75 was shown to be vitronectin (V), a multifunctional protein implicated in processes associated with platelet activation, and thus a protein whose function may require modulation for control; (e) The phosphorylation of vitronectin occurs at one site (Ser378) which, at physiological pH, is buried in its two-chain form (V65+10) but becomes exposed in the presence of glycosaminoglycans (GAGs) e.g. heparin or heparan sulfate. Such a transconformation may be used for targeting the PKA phosphorylation to vitronectin molecules bound to GAGs, for example in the extracellular matrix or on cell surfaces; (f) From the biochemical point of view (Km values and physiological concentrations) the phosphorylation of vitronectin can take place at the locus of a hemostatic event; (g) The phosphorylation of Ser378 in vitronectin alters its function, since it significantly reduces its ability to bind the inhibitor-1 of plasminogen activator(s) (PAI-1). Physiologically, this functional modulation may be involved in unleashing PAI-1, allowing its translocation to control the inhibitory function of PAI-1 and, through it, regulating the conversion of plasminogen to active plasmin.Dedicated to Edmond H. Fischer and Edwin G. Krebs, with gratitude for teaching us the right measure of thoroughness and vision in research.  相似文献   
4.
Using a dimeric bZIP protein, we have designed a leucine zipper that becomes more stable after a serine in the e position is phosphorylated by protein kinase A (delta delta GP = -1.4 kcal mol-1 dimer-1 or -0.7 kcal mol-1 residue-1). Mutagenesis studies indicate that three arginines form a network of inter-helical (i,i' + 5; i, i' + 2) and intra-helical (i, i + 4) attractive interactions with the phosphorylated serine. When the arginines are replaced with lysines, the stabilizing effect of serine phosphorylation is reduced (delta delta GP = -0.5 kcal mol-1 dimer-1). The hydrophobic interface of the leucine zipper needs a glycine in the d position to obtain an increase in stability after phosphorylation. The phosphorylated protein binds DNA with a 15-fold higher affinity. Using a transient transfection assay, we document a PKA dependent four-fold activation of a reporter gene. Phosphorylation of a threonine in the same e position decreases the stability by delta delta GP = +1.2 kcal mol-1 dimer-1. We present circular dichroism (CD) thermal denaturations of 15 bZIP proteins before and after phosphorylation. These data provide insights into the structural determinants that result in stabilization of a coiled coil by phosphorylation.  相似文献   
5.
We have previously demonstrated that the exposure of mouse microvascular endothelium (MME) to tumor necrosis factor-alpha (TNF) led to the increased binding of mouse mastocytoma cells (P815) to endothelial monolayers (Bereta et al., in press). In the current study we examined the possible involvement of protein kinases in TNF signal transduction in the endothelial cells. PKA does not appear to play a role in the potentiation of binding by TNF. We found that the TNF-generated signal is inhibited by H-7 and sangivamycin, but not by staurosporine. TNF did not cause translocation of PKC to the cell membrane and its effect could not be completely mimicked by PMA nor by PMA in the presence of calcium-raising agents. Thus, we concluded that the "classical" PKC pathway is not completely responsible for TNF signalling in this system. We also found that staurosporine itself strongly enhanced adhesion of tumor cells to endothelium, utilizing a mechanism distinct from that of TNF. Although the data provide evidence for the role of kinases in the effect of TNF on binding of tumor cells to MME, this role appears to be a complex one.  相似文献   
6.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
7.
大多数物种的卵母细胞在减数分裂前都要经历长时间停滞,其中cAMP对卵母细胞减数分裂停滞具有重要作用,本研究关注c AMP对卵母细胞减数分裂的影响及其机制。本研究通过将卵母细胞与cAMP预孵育,再用胰岛素刺激研究胰岛素诱导的卵母细胞成熟的影响,接着本研究通过显微注射和Zeiss 100TV显微镜分析cAMP对PKA在卵母细胞中定位的影响,并且本研究用Western blotting的方法研究cAMP/PKA对mos蛋白的表达和MAPK蛋白磷酸化的影响。结果显示,本研究通过亲和层析得到了高纯度的PKA蛋白,且cAMP/PKA能够抑制卵母细胞的成熟,而PKA的热稳定抑制剂PKI能够解除PKA对卵母细胞减数分裂的抑制,cAMP/PKA也能够影响mos的积累以及MAPK的磷酸化。cAMP能够影响PKA在卵母细胞中的定位,cAMP/PKA能够通过影响mos积累抑制卵母细胞的减数分裂,这可能与cAMP能够抑制MAPK磷酸化有关。  相似文献   
8.
Intraneuronal accumulation of wild‐type tau plays a key role in Alzheimer's disease, while the mechanisms underlying tauopathy and memory impairment remain unclear. Here, we report that overexpressing full‐length wild‐type human tau (hTau) in mouse hippocampus induces learning and memory deficits with remarkably reduced levels of multiple synapse‐ and memory‐associated proteins. Overexpressing hTau inhibits the activity of protein kinase A (PKA) and decreases the phosphorylation level of cAMP‐response element binding protein (CREB), GluA1, and TrkB with reduced BDNF mRNA and protein levels both in vitro and in vivo. Simultaneously, overexpressing hTau increased PKAR2α (an inhibitory subunit of PKA) in nuclear fraction and inactivated proteasome activity. With an increased association of PKAR2α with PA28γ (a nuclear proteasome activator), the formation of PA28γ‐20S proteasome complex remarkably decreased in the nuclear fraction, followed by a reduced interaction of PKAR2α with 20S proteasome. Both downregulating PKAR2α by shRNA and upregulating proteasome by expressing PA28γ rescued hTau‐induced PKA inhibition and CREB dephosphorylation, and upregulating PKA improved hTau‐induced cognitive deficits in mice. Together, these data reveal that intracellular tau accumulation induces synapse and memory impairments by inhibiting PKA/CREB/BDNF/TrkB and PKA/GluA1 signaling, and deficit of PA28γ‐20S proteasome complex formation contributes to PKAR2α elevation and PKA inhibition.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号