首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   1篇
  2022年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   9篇
  2006年   7篇
  2005年   1篇
  2004年   6篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   8篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   8篇
  1982年   8篇
  1981年   9篇
  1980年   7篇
  1979年   10篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有172条查询结果,搜索用时 275 毫秒
1.
Inhibition by ouabain of rheogenic Na+ transport across the basolateral membranes of frog skin is found to be manifest within 3–4 min. This rate of pump inhibition is not different from the rate of diffusion through extracellular tissue layers between the serosal bath and the actual site of action, i.e., the epithelial cell layers. It is concluded that the well-known slow time course of decrease in transepithelial current flow is due ionic redistribution and conductance changes of the epithelial membranes secondary to pump inhibition.  相似文献   
2.
The effect of lanthanum ions (La3+) on the release of acetylcholine (ACh) from longitudinal muscle strips of the guinea pig ileum with the myenteric plexus attached was investigated. After an exposure of the tissue to 2 mM LaCl3 for 18 min the rate of ACh release was increased approximately eightfold and the increased release lasted for more than 100 min. The augmented release of ACh was accompanied by enhanced synthesis. At the end of the experiments (102 min after LaCl3 had been removed), when the release of ACh was still more than six times higher than in controls, the content of ACh was the same in La3+-treated and untreated tissues. Electrical field stimulation failed to cause a further increase in the release of ACh from La3+-pretreated preparations whereas ouabain released considerable more ACh when compared to controls. It is concluded from this difference that electrical stimulation and ouabain release ACh from different pools.  相似文献   
3.
We have previously demonstrated that blood pressure elevation by acute blood volume expansion is volume-dependent during the infusion period and resistance-dependent in the post-infusion period in normal anesthetized dogs, and that such an increase in blood pressure is associated with a potentiation of the pressor response to norepinephrine. To evaluate the possible renal contribution to these hemodynamic changes, blood volume expansion was performed for 1 h with dextran dissolved in lactated Ringer's solution (20 ml/kg) in 15 nephrectomized dogs. The mean blood pressure, cardiac output and total peripheral resistance at the end of infusion were 126%, 225% and 60%, respectively; 3 h after volume expansion they were 126%, 151%, and 92% respectively. However, in 4 dogs, there was an increase in mean blood pressure (138%) 3 h after volume expansion. This was thought to result from an increase in the total peripheral resistance (133%) associated with the recovery of cardiac output (106%). The pressor response to norepinephrine (0.5 microgram/kg) was potentiated after volume expansion. These results indicate that the handling of volume by the kidney contributed to the maintenance of an elevated level of cardiac output. However, nephrectomy did not seem to interfere with the hemodynamic switching of the causative factor for blood pressure elevation from increased cardiac output to increased total peripheral resistance. Neither was the potentiation of pressor response to norepinephrine affected.  相似文献   
4.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump.  相似文献   
5.
The function of the syncytiotrophoblast in maternal-fetal exchange is related to the properties of its microvillous (maternal-facing) and basal (fetal-facing) plasma membranes. We have previously reported the properties of the microvillous membrane (Smith, C.H., Nelson, D.M., King, B.F., Donohue, T.M., Ruzycki, S.M. and Kelley, L.K. (1977) Am. J. Obstet. Gynecol. 128, 190–196), and now describe the purification and partial characterization of the basal plasma membrane. Sonication and incubation with EDTA were used to isolate selectively the basal cell membrane. These steps were followed by a more conventional purification by centrifugation. The trophoblast was disrupted and its microvillous membrane and cytoplasmic contents were removed by sonication. The exposed basal cell membrane was selectively released from the underlying basal lamina by sonication in the presence of EDTA and further purified by discontinuous Ficoll gradient centrifugation. The material at the 4–10% Ficoll interface consisted of smooth membrane vesicles with internal microfilaments. It was 45-fold enriched in dihydroalprenolol binding activity and 11-fold enriched in ouabain binding activity. Other enzymatic analyses, including alkaline phosphatase, cytochrome-c oxidase, cytochrome-c reductase and galactosyl transferase indicated low contamination by other organelles. This procedure yields a preparation of relatively high purity which should be suitable for investigation of transport and other functions of the basal surface membrane of trophoblast. In principle, the purification procedures used may be applicable to other transporting epithelia.  相似文献   
6.
Summary Na+, K+ exchanges were studied in isolated hepatocytes of the rainbow trout, Salmo gairdneri. Ouabain at 10–4 M produced maximal inhibition (95%) of K+ uptake and enhanced intracellular Na+ accumulation, showing that active fluxes account for a very large proportion of Na+ and K+ exchanges. Inhibition of the Na–K pump by ouabain was significant at low concentrations (10–8 M). When external K+ concentration was reduced from 7 mM to 0.5 mM, half maximum inhibition (IC50) of K+ uptake was obtained at a 22-fold lower concentration of ouabain confirming that ouabain and potassium compete at the same pump site. Time-course analysis of [3H]ouabain binding indicated a two-component kinetics: one component saturable and dependent on K+ concentration in the medium, the other linear and independent of external K+. The ouabain binding site number, determined by Scatchard plots, remained constant (ca. 2.5·105 per cell) and independent of the external K+ concentration (7, 0.5 or 0 mM), while the dissociation constant (KD) decreased from 4.2 M to 7.3 nM when K+ was removed from the Hank's medium. These ouabain binding sites are characterized by an exceptionally low turnover rate (400 min–1), as estimated from ouabain-sensitive K+ flux, in comparison to those described in other cell types of higher vertebrates. At each external K+ concentration studied, the inhibition of K+ uptake and ouabain binding measured as a function of ouabain concentration indicated a strict correlation between the degree of K pump inhibition and the amount of bound glycoside.  相似文献   
7.
Abstract: Malonate is a reversible inhibitor of succinate dehydrogenase (SDH) that produces neurotoxicity by an N -methyl- d -aspartate (NMDA) receptor-dependent mechanism. We have examined the influence of pharmacological manipulation of membrane potential on striatal malonate toxicity in rats in vivo by analysis of lesion volume. Depolarization caused by coinjection of the Na+,K+-ATPase inhibitor ouabain or a high concentration of potassium greatly exacerbated malonate toxicity; this combined toxicity was blocked by the noncompetitive NMDA antagonist MK-801. The toxicity of NMDA was also exacerbated by ouabain. The overt toxicity of a high dose of ouabain (1 nmol) was largely prevented by MK-801. Coinjection of the K+ channel activator minoxidil (4 nmol) to reduce depolarization attenuated the toxicity of 1 µmol of malonate by ∼60% without affecting malonate-induced ATP depletion. These results indicate that membrane depolarization exacerbates malonate neurotoxicity and that membrane hyperpolarization protects against malonate-induced neuronal damage. We hypothesize that the effects of membrane potential on malonate toxicity are mediated through the NMDA receptor as a result of its combined agonist- and voltage-dependent properties.  相似文献   
8.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   
9.
Abstract: A novel fluorescent Na+ indicator, Na+-binding benzofuran isophthalate (SBFI), was used to follow changes in the intracellular free Na+ concentration ([Na+]1) of synaptosomes. The dye, when loaded into synapto- somes in the form of its acetoxymethyl ester, was responsive to changes of [Na+]1. Calibration was made using the 340/380 nm excitation ratio when the cytoplasmic Na+ concentration was equilibrated with different concentrations of extracellular Na+ in the presence of 2 μ M gramicidin D. The basal value of [Na+]1 in synaptosomes in the presence of 140 m M extracellular Na+ was found to be 10.9 ± 1.8 m M. Veratridine, which opens potential-dependent Na+ channels, caused a sudden increase in [Na+]1 in a concentration-dependent manner (1 -20 μ M ), whereas the effect of ouabain (20 and 50 μ M ), the inhibitor of the plasma membrane Na+,K+-ATPase, was more gradual. The rise in the fluorescence intensity upon addition of veratridine was prevented completely by 2 μ M tetrodotoxin. α-Latrotoxin, the black widow spider toxin, caused an increase in the fluorescence intensity, which became evident 1 min after the addition of the toxin. The rate of increase was proportional to the concentration of the toxin (0.19–1.5 n M ). This report confirms our earlier finding demonstrating a Na+-dependent component in the action of α-Iatrotoxin, and shows that changes in [Na+]1 in synaptosomes can be followed by SBFI.  相似文献   
10.
Abstract: Upon addition of the cardiac glycoside ouabain to cultured cerebellar granule cells, an immediate increase in intracellular free sodium is evoked mediated by two pathways, a voltage-sensitive channel blocked by tetrodotoxin and a channel sensitive to flunarizine. Ouabain induces a steady plasma membrane depolarization in low Ca2+ medium; whereas in the presence of Ca2+, a distinct discontinuity is observed always preceded by a large increase in intracellular free Ca2+ ([Ca2+]c). The plateau component of the increase can be inhibited additively by the L-type Ca2+ channel antagonist nifedipine, the spider toxin Aga-Gl, and the NMDA receptor antagonist MK-801. Single-cell imaging reveals that the [Ca2+]c increase occurs asynchronously in the cell population and is not dependent on a critical level of extracellular glutamate or synaptic transmission between the cells. A prolonged release of glutamate is also observed that is predominantly Ca2+ dependent for the first 6–10 min after the evoked increase in [Ca2+]c. This release is four times as large as that observed with 50 m M KCl and is predominantly exocytotic because release was inhibited by tetanus toxin, the V-type ATPase inhibitor bafilomycin, and Aga-Gl. It is proposed, therefore, that ouabain induces a period of membrane excitability culminating in a sustained exocytosis above that observed upon permanent depolarization with KCl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号