首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
Undoubtedly, drought is one of the prime abiotic stresses in the world. Crop yield losses due to drought stress are considerable. Although a variety of approaches have been used to alleviate the problem of drought, plant breeding, either conventional breeding or genetic engineering, seems to be an efficient and economic means of tailoring crops to enable them to grow successfully in drought-prone environments. During the last century, although plant breeders have made ample progress through conventional breeding in developing drought tolerant lines/cultivars of some selected crops, the approach is, in fact, highly time-consuming and labor- and cost-intensive. Alternatively, marker-assisted breeding (MAB) is a more efficient approach, which identifies the usefulness of thousands of genomic regions of a crop under stress conditions, which was, in reality, previously not possible. Quantitative trait loci (QTL) for drought tolerance have been identified for a variety of traits in different crops. With the development of comprehensive molecular linkage maps, marker-assisted selection procedures have led to pyramiding desirable traits to achieve improvements in crop drought tolerance. However, the accuracy and preciseness in QTL identification are problematic. Furthermore, significant genetic × environment interaction, large number of genes encoding yield, and use of wrong mapping populations, have all harmed programs involved in mapping of QTL for high growth and yield under water limited conditions. Under such circumstances, a transgenic approach to the problem seems more convincing and practicable, and it is being pursued vigorously to improve qualitative and quantitative traits including tolerance to biotic and abiotic stresses in different crops. Rapid advance in knowledge on genomics and proteomics will certainly be beneficial to fine-tune the molecular breeding and transformation approaches so as to achieve a significant progress in crop improvement in future. Knowledge of gene regulation and signal transduction to generate drought tolerant crop cultivars/lines has been discussed in the present review. In addition, the advantages and disadvantages as well as future prospects of each breeding approach have also been discussed.  相似文献   
2.
Volume changes of cardiac tissue under hyperosmotic stress in Rana catesbeiana were characterized by the identification of the osmolytes involved and the possible regulatory processes activated by both abrupt and gradual changes in media osmolality (from 220 to 280mosmol/kg H(2)O). Slices of R. catesbeiana cardiac tissue were subjected to hyperosmotic shock, and total tissue Na(+), K(+), Cl(-) and ninhydrin-positive substances were measured. Volume changes were also induced in the presence of transport inhibitors to identify osmolyte pathways. The results show a maximum volume loss to 90.86+/-0.73% of the original volume (measured as 9% decrease in wet weight) during abrupt hyperosmotic shock. However, during a gradual osmotic challenge the volume was never significantly different from that of the control. During both types of hyperosmotic shock, we observed an increase in Na(+) but no significant change in Cl(-) contents. Additionally, we found no change in ninhydrin-positive substances during any osmotic challenge. Pharmacological analyses suggest the involvement of the Na(+)/H(+) exchanger, and perhaps the HCO(3)(-)/Cl(-) exchanger. There is indirect evidence for decrease in Na(+)/K(+)-ATPase activity. The Na(+) fluxes seem to result from Mg(2+) signaling, as saline rich in Mg(2+) enhances the regulatory volume increase, followed by a higher intracellular Na(+) content. The volume maintenance mechanisms activated during the gradual osmotic change are similar to that activated by abrupt osmotic shock.  相似文献   
3.
Osmolytes have been proposed as treatments for neurodegenerative proteinopathies including Alzheimer’s disease. However, for osmolytes to reach the clinic their efficacy must be improved. In this work, copper(I)-catalyzed azide–alkyne cycloaddition chemistry was used to synthesize glycoclusters bearing six copies of trehalose, lactose, galactose or glucose, with the aim of improving the potency of these osmolytes via multivalency. A trehalose glycocluster was found to be superior to monomeric trehalose in its ability to retard the formation of amyloid-beta peptide 40 (Aβ40) fibrils and protect neurons from Aβ40-induced cell death.  相似文献   
4.
The effects of urea and glycine-betaine (GB) osmolytes on the hydrophobic interactions of neopentane in water have been studied using molecular dynamics simulations. From the study of the potentials of mean force, it is observed that both urea and GB decrease the association and solvation of neopentane. The calculated equilibrium constants show that urea and GB decrease the population of solvent-separated minima of neopentane. The hydrophobic association as well as solvation of neopentane molecules are stabilised by entropy and enthalpy in the mixtures. The radial distribution functions (RDFs) and running coordination numbers of water, urea and GB molecules show that neopentane shows salting-in behaviour in aqueous-GB, aqueous-urea and aqueous-urea-GB mixtures. Neopentane is preferentially solvated by GB in aqueous-GB and preferentially solvated by urea in aqueous-urea-GB solutions. The preferential solvation of neopentane by GB suggests that GB decreases the interaction between neopentane molecules i.e. salting-in of neopentane. The calculated solvation free energies and radial density profiles of neopentane also support the salting-in behaviour of neopentane in the mixtures of these osmolytes.  相似文献   
5.
Five popularly grown mulberry cultivars (K-2, MR-2, TR-10, BC2-59 and S-13) were subjected to drought stress by withholding irrigation, to obtain leaf water potentials (Ψw) ranging from −0.75, −1.50 and −2.25 MPa. Accumulation of proline, glycine betaine and abscisic acid (ABA) were quantified in control and water stressed mulberry leaves. The activities of enzymes involved in proline accumulation including glutamate dehydrogenase (EC1.4.1.2-4), pyrroline-5-carboxylate synthetase (EC 1.2.1.41), pyrroline-5-carboxylate reductase (EC1.5.1.2), ornithine transaminase (EC 2.6.1.13) were significantly enhanced in the leaves of all the cultivars with decreasing leaf water potentials, while the activities of proline dehydrogenase (EC 1.5.1.2) were reduced with progressive increase in water stress. Accumulation of proline, glycine betaine and abscisic acid was relatively higher in S-13 and BC2-59 compared to K-2, MR-2 and TR-10 under water deficit conditions. Our results demonstrate that S-13 and BC2-59 have superior osmoprotectant mechanisms under water-limited growth regimes.  相似文献   
6.
7.
Summary A method of stabilizing folded proteins is described, which allows NMR studies under conditions where a protein would normally be unfolded. This enables stable proteins to be examined at elevated temperatures, or spectra recorded on samples that are insufficiently stable under normal conditions. Up to two molar perdeuterated glycine, a potent osmolyte, can be added to aqueous protein NMR samples without altering the folded three-dimensional structure or function of the protein. However, the stability of the folded form is dramatically increased. This is illustrated for the protein lysozyme at high temperature (348 K) where the structural integrity is destroyed in standard aqueous solution, but is retained in the osmolyte solution. We hope that the technique will be of value to those studying by NMR the structural biology of protein fragments and mutants, which are often of reduced stability compared with the original proteins.To whom correspondence should be addressed.  相似文献   
8.
Organic osmolytes are used in animal and plant cells to adapt to hyper- and hypoosmolar stress. We used our RBC-membrane model to investigate the effects of the osmolytes betaine, sorbitol and myo-inositol on Na(+)/K(+)-ATPase, Ca(2+)-ATPase and calmodulin-stimulated Ca(2+)-ATPase (CaM). Our results show that betaine inhibited ATPases by more than 61%: Na(+)/K(+)-ATPase (75 +/- 5.9 vs 27 +/- 2.2), Ca(2+)-ATPase (236 +/- 18.9 vs 62 +/- 4.9), and CaM (450 +/- 18 vs 174 +/- 6.9) (microM pi/min/mg protein, control (0 microM betaine) vs 100 micromol/L betaine). Sorbitol (100 micromol/L) inhibited the Ca(2+)-ATPases by 41% (126 +/- 7.6 vs 74 +/- 4.4) and CaM by 42% (253 +/- 17.7 vs 147 +/- 10.3). Inositol (100 micromol/L) inhibited Na(+)/K(+)-ATPase strongest (37 +/- 1.9 vs 20 +/- 1.0; 47% inhibition) while it showed a lesser effect on the Ca(2+)-ATPases (136 +/- 6.8 vs 102 +/- 5.1; 25% inhibition). All osmolytes inhibited RBC membrane ATPases at concentrations above 50 micromol/L, which corresponds to high normal physiologic range for organic osmolytes in serum. Furthermore, the presence of osmolytes (250 micromol/L) decreased hypoosmotic stress induced hemolysis by 42%. Together these data indicate an important regulatory role of organic osmolytes on human RBC membrane ATPases and a protective function of osmolytes in RBCs against hypoosmotic stress.  相似文献   
9.
The fungus Fusarium oxysporum f. sp. lycopersici (FOL) is known to cause vascular wilt on tomato almost over the world. Inoculation of FOL reduced plant growth and increased wilt of tomato. The following study examined the possible role of arbuscular mycorrhizal fungi (AMF) consortium comprising of Rhizophagus intraradices, Funneliformis mosseae and Claroideoglomus etunicatum against FOL in tomato and explored in an inducing plant systemic defense. AMF inoculation reduced the wilt disease within vascular tissue and in vivo production of fusaric acid was observed which may be responsible in reduced wilting. FOL had an antagonistic effect on AMF colonization, reduced the number of spores, arbuscules and vesicles. AMF also inhibited the damage induced by Fusarium wilt through increasing chlorophyll contents along with the activity of phosphate metabolising enzymes (acid and alkaline phosphatases). Moreover, tomato plants with mycorrhizal inoculation showed an increase in the level of antioxidant enzymes including glutathione reductase, catalase, and etc. with an ultimate influence on the elimination of reactive oxygen species. Moreover, rise in phosphatase along with antioxidant enzymatic systems and enhanced photosynthetic performance contributed to induced resistance against FOL in tomato.  相似文献   
10.
Osmolytes are a series of different kinds of small molecules that can maintain the correct conformation of protein by acting as molecular chaperons. In this study, the protective effects of four compatible osmolytes, i.e., proline, sucrose, DMSO and glycerol, were studied during arginine kinase (EC 2.7.3.3) unfolding and aggregation. The results showed that all the osmolytes applied in this study obviously prevented AK unfolding and inactivation that was due to a GdnHCl denaturant by reducing the inactivation rate constants (ki), increasing the transition free energy changes (ΔΔGi) and increasing the value for the midpoint of denaturation (Cm). Furthermore, the osmolytes remarkably prevented AK aggregation in a concentration-dependent manner during AK refolding. Our results strongly indicated that osmolytes were not only metabolism substrates, but they were also important compounds with significant physiological protective functions for proteins, especially in some extremely harsh environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号