首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   3篇
  国内免费   2篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   2篇
  2014年   15篇
  2013年   18篇
  2012年   15篇
  2011年   22篇
  2010年   5篇
  2009年   3篇
  2008年   15篇
  2007年   8篇
  2006年   12篇
  2005年   4篇
  2004年   13篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   14篇
  1999年   6篇
  1998年   13篇
  1997年   18篇
  1996年   13篇
  1995年   17篇
  1994年   12篇
  1993年   12篇
  1992年   12篇
  1991年   12篇
  1990年   11篇
  1989年   6篇
  1988年   7篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   7篇
  1983年   11篇
  1982年   11篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
排序方式: 共有380条查询结果,搜索用时 125 毫秒
1.
This mini-review outlines the opioid systems and their roles primarily as related to reward and compulsive drug/alcohol intake. The central role is taken by the mu-opioid receptor, target for opiate analgesics and also a central target in compulsive alcohol abuse, alcoholism. The mu-opioid receptor and the cognate opioid neuropeptides from proenkephalin and proopiomelancortin are members of a superfamily of opioid systems, each with unique and still to be defined roles in the central nervous system.  相似文献   
2.
The subcellular and regional distribution of endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was determined by an enzymatic assay using metorphamide and by immunochemical techniques in the CNS of the rat. The rat CNS contains a membrane-associated form of endo-oligopeptidase, an enzyme predominantly associated with the soluble fraction of brain homogenates. Subcellular fractionation showed that approximately 17% of the total activity of the enzyme is associated with membrane fractions including synaptosomes. Synaptosomal membranes were prepared from neocortex, striatum, hypothalamus, medulla, spinal cord, and cerebellum. The amount of EC 3.4.22.19 activity solubilized by 3-[( 3-cholamidopropyl]dimethylammonio)-1-propanesulfonate from synaptosomal membranes was similar in neocortex, striatum, and hypothalamus, being three- to 10-fold greater than in spinal cord, cerebellum, and medulla. A polyclonal antibody exhibiting high affinity for endo-oligopeptidase was raised in rabbits against the purified rat brain enzyme and used to localize endo-oligopeptidase by Western blotting and by immunoperoxidase techniques. A strong band corresponding to the Mr of EC 3.4.22.19 was found in solubilized proteins obtained from synaptosomal membranes prepared from hypothalamus, neocortex, and striatum when subjected to Western blotting. The immunohistochemical localization of endo-oligopeptidase indicated that the immunoreactivity was confined to gray matter in regions known to be rich in peptide-containing neurons such as the striatum. In the cerebellum, a region poor in peptides, no staining could be detected. The nonuniform distribution of endo-oligopeptidase in rat brain suggests a role in neurotransmitter processing in the CNS.  相似文献   
3.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   
4.
The relationship between the stability of potential neurochemical markers and autolysis time was studied at 4 degrees C and 25 degrees C using postmortem brain samples from two rat strains. In general, qualitatively similar results were obtained with either N/Nih or Sprague-Dawley rats; however, quantitative differences were often observed, particularly in regard to benzodiazepine receptor changes. For every enzyme activity or binding property examined, no significant change was found when brains were kept at 4 degrees C for up to 72 h prior to freezing at -70 degrees C. Na,K-ATPase and low-affinity Ca-ATPase activities were also stable in brains kept at 25 degrees C for up to 72 h. Mg-ATPase activity was reduced in brains kept at 25 degrees C for 24 and 48 h. [3H]Guanidinoethylmercaptosuccinic acid [( 3H]GEMSA) binding to enkephalin convertase in the cytosol was not significantly changed in brains kept at 25 degrees C; however, a small increase was seen for [3H]GEMSA binding to the membrane fraction at 24, but not 48 and 72 h postmortem. [3H]Quinuclidinyl benzilate [( 3H]QNB) binding to muscarinic cholinergic receptors decreased in brains kept at 25 degrees C for 72 h. Opioid receptor binding also decreased in brains kept at 25 degrees C. Using [3H]2-D-alanine-5-D-leucine enkephalin to label delta opioid receptors, a statistically significant decrease in binding was observed as early as 6 h postmortem, and was completely abolished after 72 h at 25 degrees C. In contrast, [3H]naloxone binding was unchanged after 24 h at 25 degrees C, but was decreased after 48 and 72 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Opioid peptides are implicated in the control of gonadotropin and prolactin secretion. The role of opioid antagonist naloxone and its effects on plasma gonadotropin, prolactin, testosterone levels and testicular hyaluronidase, acid phosphatase, [3H]uridine and thymidine incorporation, RNA, DNA and protein concentrations were evaluated in rats after administration of naloxone beginning day 1 through 21 and autopsied on 45, 60 and 90 days of age. Plasma gonadotropin and testosterone levels were significantly elevated after naloxone treatment. Testicular hyaluronidase and acid phosphatase activity increased till 60 days post treatment and declined thereafter. Concentrations of RNA and protein did not change significantly but the concentration of DNA declined at 45 and 60 days of age. These results suggest that endogenous opioid peptides exert regulatory influence on gonadotropin secretion which in turn control the testicular function in the male rat.  相似文献   
6.
Summary It has long been disputed whether mammalian enterochromaffin (EC-) cells contain a peptide in addition to serotonin. Previous immunohistochemical studies have provided evidence for the presence of enkephalins in EC-cells. These findings, however, are equivocal. Therefore, the problem of opioid peptides in EC-cells has been re-examined in the gastro-intestinal mucosa of dog, guinea-pig and man. A battery of antisera against derivatives of pro-opiomelanocortin, pro-enkephalin and pro-dynorphin have been applied to semithin serial sections of the tissues, in combination with fluorescence histochemistry and serotonin immunocytochemistry. Our findings indicate that EC-cells of the investigated species contain pro-dynorphin-related peptides, i.e. dynorphin A and -neo-endorphin, but no derivatives from pro-opiomelanocortin or pro-enkephalin. Since remarkable interspecies variations occur with respect to the number and staining characteristics of opioid immunoreactive EC-cells, it is concluded that pro-dynorphin shows specific routes of post-translational processing depending upon the species and the gastro-intestinal segment investigated. Future studies should focus on the mutual relationships between serotonin and dynorphins and on the physiological significance of these peptides in the gastrointestinal tract.Part of the results were presented at the Bayliss and Starling Society National Scientific Meeting 1985, London (Cetin et al. 1985)  相似文献   
7.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   
8.
Recent pharmacological data strongly support the hypothesis of δ receptor subtypes as mediators of both supraspinal and spinal antinociception (δ1 and δ2 receptors). In vitro ligand binding data, which are fully supportive of the in vivo data, are still lacking. A previous study indicated that [3H][ -Ala2, -Leu5]enkephalin labels two binding sites in membranes depleted of μ binding sites by pretreatment with the site-directed acylating agent, 2-(p-ethoxybenzyl)-1-diethylaminoethyl-5-isothiocyanatobenzimidazole-HCI (BIT). The main goal of the present study was to develop a ligand-selectivity profile of the two δncx binding sites. The data indicated that naltrindole and oxymorphindole were relatively selective for site 1 (20-fold). [ -Ser2,Thr6]Enkephalin and deltorphin-II were only 2.7-fold and 2.2-fold selective for site 1. [ -Pen2, -Pen5]Enkephalin and deltorphin-I were 80-fold and 38-fold selective for site 2.3-Iodo-Tyr- -Ala-Gly-Phe- -Leu was 52-fold selective for site 1. Morphine had moderate affinity for site 1 (Ki = 16 nM), and was about 11-fold selective for site 1. Thus, of the 10 drugs studied, only DPDPE and DELT-I were selective for site 2. Viewed collectively with other data, it is likely that the δ1 receptor and the δncx binding site are synonymous.  相似文献   
9.
Cyclic analogues of the β-casein-derived opioid peptide β-casomorphin-5 (H-Tyr-Pro-Phe-Pro-Gly-OH) were prepared through substitution of the Pro2 residue with various ,ω-diamino acid residues (lysine, ornithine, 2,4-diaminobutyric acid) and cyclization of the ω-amino group to the C-terminal carboxyl function. Compounds of this type, with D-configuration at the 2-position residue, showed high opioid receptor affinity with some preference for μ receptors over δ receptors, high potency in the guinea pig ileum assay and considerable activity in the mouse vas deferens assay. Configurational inversion at the 4-position in these cyclic analogues resulted in enhanced affinity for both μ and δ receptors, whereas N-methylation of the Phe3 residue produced a potency decrease.  相似文献   
10.
Abstract: A subclone of NG108–15 neuroblastoma-glioma hybrid cells was used to study the intracellular distribution of opioid receptors. Subcellular organelles were separated on self-generating Percoll-sucrose gradients and the enzymes β-glucuronidase, galactosyltransferase, 5′-nucleotidase, and glucose-6-phosphatase were used as markers to localize the various structures. Analysis of the receptor distribution from untreated cells shows that the plasma membranes contained the highest receptor density, but a significant portion of the opioid binding sites was unevenly distributed between the lysosomes, microsomes, and Golgi elements. The enzyme markers indicated that appearance of opioid receptors in these intracellular structures does not result merely from contamination with plasma membranes. About 11% of the receptors appeared in a fraction lighter than plasma membranes. The antilysosomal agent chloroquine altered the intracellular compartmentation of the receptors, possibly by blocking their translocation in the cells. Leu-enkephalin induced time-dependent loss of receptors from all four intracellular compartments examined, but a kinetic analysis showed that the rate of receptor loss in these fractions was not identical. Thus, the percent of receptors appearing in the lysosomal fraction that could still bind [3H]-D-Ala2D-Leu5-enkephalin in vitro was increased on treatment with Leu-enkephalin. As an additional approach to follow the intracellular fate of the receptors, cells were labeled with [3H]diprenorphine, chased with various unlabeled opiates, and the distribution of 3H-ligand-receptors in the cells was monitored. Leu-enkephalin and etorphine altered the distribution of receptor-bound [3H]diprenorphine between the plasma membranes, lysosomes, and Golgi elements, whereas morphine had no such effect. The study sheds light on the role of intracellular structures in the metabolism of opioid receptors in untreated and opioid-treated cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号