首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8242篇
  免费   538篇
  国内免费   37篇
  2023年   48篇
  2022年   60篇
  2021年   111篇
  2020年   87篇
  2019年   140篇
  2018年   158篇
  2017年   98篇
  2016年   125篇
  2015年   184篇
  2014年   328篇
  2013年   407篇
  2012年   255篇
  2011年   485篇
  2010年   464篇
  2009年   519篇
  2008年   541篇
  2007年   540篇
  2006年   477篇
  2005年   501篇
  2004年   560篇
  2003年   434篇
  2002年   412篇
  2001年   174篇
  2000年   152篇
  1999年   147篇
  1998年   168篇
  1997年   166篇
  1996年   131篇
  1995年   132篇
  1994年   108篇
  1993年   111篇
  1992年   91篇
  1991年   64篇
  1990年   29篇
  1989年   29篇
  1988年   27篇
  1987年   25篇
  1986年   12篇
  1985年   32篇
  1984年   58篇
  1983年   42篇
  1982年   50篇
  1981年   32篇
  1980年   20篇
  1979年   18篇
  1978年   14篇
  1977年   8篇
  1976年   9篇
  1974年   10篇
  1973年   7篇
排序方式: 共有8817条查询结果,搜索用时 31 毫秒
1.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
2.
The mechanism by which enzymes recognize the “uniform” collagen triple helix is not well understood. Matrix metalloproteinases (MMPs) cleave collagen after the Gly residue of the triplet sequence Gly∼[Ile/Leu]-[Ala/Leu] at a single, unique, position along the peptide chain. Sequence analysis of types I-III collagen has revealed a 5-triplet sequence pattern in which the natural cleavage triplets are always flanked by a specific distribution of imino acids. NMR and MMP kinetic studies of a series of homotrimer peptides that model type III collagen have been performed to correlate conformation and dynamics at, and near, the cleavage site to collagenolytic activity. A peptide that models the natural cleavage site is significantly more active than a peptide that models a potential but non-cleavable site just 2-triplets away and NMR studies show clearly that the Ile in the leading chain of the cleavage peptide is more exposed to solvent and less locally stable than the Ile in the middle and lagging chains. We propose that the unique local instability of Ile at the cleavage site in part arises from the placement of the conserved Pro at the P3 subsite. NMR studies of peptides with Pro substitutions indicate that the local dynamics of the three chains are directly modulated by their proximity to Pro. Correlation of peptide activity to NMR data shows that a single locally unstable chain at the cleavage site, rather than two or three labile chains, is more favorable for cleavage by MMP-1 and may be the determining factor for collagen recognition.  相似文献   
3.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   
4.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
5.
Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state.The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor.A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.  相似文献   
6.
Two glutamic acid-rich fusion peptide analogs of influenza hemagglutinin were synthesized to study the organization of the charged peptides in the membranous media. Fluorescence and gel electrophoresis experiments suggested a loose association between the monomers in the vesicles. A model was built which showed that a positional difference of 3, 7 and 4, 8 results in the exposure of Glu3 and Glu7 side chains to the apolar lipidic core. Supportive results include: first, pKa values of two pH units higher than reference value in aqueous medium for Glu3 and Glu7 CγH, whereas the deviation of pKa from the reference value for Glu4 and Glu8 CγH is substantially smaller; second, Hill coefficients of titration shift of these protons indicate anti-cooperativity for Glu3 and Glu7 side chain protons but less so for Glu4 and Glu8, implying a strong electrostatic interaction between Glu3 and Glu7 possibly resulting from their localization in an apolar environment; third, positive and larger titration shift for NH of Glu3 is observed compared to that of Glu4, suggesting stronger hydrogen bond between the NH and the carboxylic group of Glu3 than that of Glu4, consistent with higher degree of exposure to hydrophobic medium for the side chain of Glu3.  相似文献   
7.
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.  相似文献   
8.
  1. Download : Download high-res image (88KB)
  2. Download : Download full-size image
  相似文献   
9.
Three new isopimarane-type diterpenoids, named callicapene M1 (1), callicapene M2 (2), and callicapene M3 (3), together with four known isopimarane-type diterpenoids (4, 5, 6, 7), were isolated from the Callicarpa macrophylla Vahl. Their structures were elucidated by spectroscopic techniques (IR, UV, MS, 1D, 2D NMR). The isolated compounds 6 and 7 exhibited potent inhibitory activity with inhibition rates of 40.23–46.78% on NO production in LPS-activated RAW 264.7 macrophage cells by using MTT assays.  相似文献   
10.
For flexible peptides, nuclear Overhauser Effects (NOE) experiments do not provide enough information to ensure a correct definition of their solution structure. The use of distance constraints, derived from the knowledge of proton chemical shifts, is developed to restrict the number of possible conformations. In the case of flexible molecules, randomization appears as an important factor of the correct estimation of the chemical shifts from the 3D structure. The refinement of the solution structure of the highly flexible AVP-like parallel dimer is described to illustrate this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号