首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.  相似文献   
2.
Sepsis and shock states impose mitochondrial stress, and in response, adaptive mechanisms such as fission, fusion and mitophagy are induced to eliminate damaged portions of or entire dysfunctional mitochondria. The mechanisms underlying these events are being elucidated; yet a direct link between loss of mitochondrial membrane potential ΔΨm and the initiation of fission, fusion and mitophagy remains to be well characterized. The direct association between the magnitude of the ΔΨm and the capacity for mitochondria to buffer Ca2+ renders Ca2+ uniquely suited as the signal engaging these mechanisms in circumstances of mitochondrial stress that lower the ΔΨm. Herein, we show that the calcium/calmodulin-dependent protein kinase (CaMK) IV mediates an adaptive slowing in oxidative respiration that minimizes oxidative stress in the kidneys of mice subjected to either cecal ligation and puncture (CLP) sepsis or endotoxemia. CaMKIV shifts the balance towards mitochondrial fission and away from fusion by 1) directly phosphorylating an activating Serine616 on the fission protein DRP1 and 2) reducing the expression of the fusion proteins Mfn1/2 and OPA-1. CaMKIV, through its function as a direct PINK1 kinase and regulator of Parkin expression, also enables mitophagy. These data support that CaMKIV serves as a keystone linking mitochondrial stress with the adaptive mechanisms of mitochondrial fission, fusion and mitophagy that mitigate oxidative stress in the kidneys of mice responding to sepsis.  相似文献   
3.
Insulin resistance leads to myocardial contractile dysfunction and deranged autophagy although the underlying mechanism or targeted therapeutic strategy is still lacking. This study was designed to examine the impact of inhibition of the cytochrome P450 2E1 (CYP2E1) enzyme on myocardial function and mitochondrial autophagy (mitophagy) in an Akt2 knockout model of insulin resistance. Adult wild-type (WT) and Akt2?/? mice were treated with the CYP2E1 inhibitor diallyl sulfide (100?mg/kg/d, i.p.) for 4?weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate autophagy, mitophagy, inducible NOS (iNOS), and the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex. Akt2 deletion triggered insulin resistance, compromised cardiac contractile and intracellular Ca2+ property, mitochondrial ultrastructural damage, elevated O2 production, as well as suppressed autophagy and mitophagy, accompanied with elevated levels of NLRP3 and iNOS, the effects of which were significantly attenuated or ablated by diallyl sulfide. In vitro studies revealed that the NLRP3 activator nigericin nullified diallyl sulfide-offered benefit against Akt2 knockout on cardiomyocyte mechanical function and mitophagy (using Western blot and colocalization of GFP-LC3 and MitoTracker Red). Moreover, inhibition of iNOS but not mitochondrial ROS production attenuated Akt2 deletion-induced activation of NLRP3, substantiating a role for iNOS-mediated NLRP3 in insulin resistance-induced changes in mitophagy and cardiac dysfunction. In conclusion, these data depict that insulin resistance through CYP2E1 may contribute to the pathogenesis of myopathic changes including myocardial contractile dysfunction, oxidative stress and mitochondrial injury, possibly through activation of iNOS and NLRP3 signaling.  相似文献   
4.
The PINK1/Parkin pathway plays an important role in maintaining a healthy pool of mitochondria. Activation of this pathway can lead to apoptosis, mitophagy, or mitochondrial-derived vesicle formation, depending on the nature of mitochondrial damage. The signaling by which PINK/Parkin activation leads to these different mitochondrial outcomes remains understudied. Here we present evidence that cannabidiol (CBD) activates the PINK1-Parkin pathway in a unique manner. CBD stimulates PINK1-dependent Parkin mitochondrial recruitment similarly to other well-studied Parkin activators but with a distinctive shift in the temporal dynamics and mitochondrial fates. The mitochondrial permeability transition pore inhibitor cyclosporine A exclusively diminished the CBD-induced PINK1/Parkin activation and its associated mitochondrial effects. Unexpectedly, CBD treatment also induced elevated production of mitochondrial-derived vesicles (MDV), a potential quality control mechanism that may help repair partial damaged mitochondria. Our results suggest that CBD may engage the PINK1-Parkin pathway to produce MDV and repair mitochondrial lesions via mitochondrial permeability transition pore opening. This work uncovered a novel link between CBD and PINK1/Parkin-dependent MDV production in mitochondrial health regulation.  相似文献   
5.

Background

Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy.

Results

This study has revealed that Δatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI.

Conclusions

Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0358-z) contains supplementary material, which is available to authorized users.  相似文献   
6.
Atsushi Tanaka 《FEBS letters》2010,584(7):1386-19640
Cellular homeostasis is linked tightly to mitochondrial functions. Some damage to mitochondrial proteins and nucleic acids can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. Mitochondrial dysfunction is one of the key aspects of the pathobiology of neurodegenerative disease. Parkin, an E3 ligase located in the cytosol and originally discovered as mutated in monogenic forms of Parkinson’s disease (PD), was found recently to translocate specifically to uncoupled mitochondria and to induce their autophagy.  相似文献   
7.
Autophagy is a conserved catabolic process that plays an important role in cellular homeostasis. The study of the interplay between autophagy and zinc has gained interest over the last years. Multiple studies have indicated that zinc stimulates autophagy and is critical for basal and induced autophagy in mammalian cells. Conversely, autophagy is induced by zinc starvation in yeast. There are no studies analyzing the role of zinc in either Microautophagy or Chaperone-Mediated-Autophagy. The mechanisms by which zinc modulates autophagy are still poorly understood. Studies examining loss of function of genes involved in cellular zinc homeostasis have provided novel insights into the role of zinc in autophagy. Autophagy may help cells adapt to changes in zinc availability in medium by controlling zinc mobilization, recycling, and secretion. Zinc is a key player in toxic and protective autophagy.  相似文献   
8.
目的:观察大鼠心肌缺血再灌注损伤模型不同时间点线粒体及线粒体自噬的变化。方法:成年雄性SD大鼠40只,随机分为假手术对照组(sham组):开胸不进行冠状动脉左前降支(Left anterior descending coronary artery,LAD)血流阻断;缺血再灌注组2h组(I/R 2 h组)、24 h组(I/R 24 h组)及48 h组(I/R 48 h组),以上3组均阻断LAD 30 min,分别于再灌注后2 h、24 h、48 h观察心肌ATP含量,线粒体膜电位水平变化,透射电镜下观察线粒体及线粒体自噬超微结构变化,western blot法测定线粒体自噬蛋白PINK1、Parkin、p62、LC3B及线粒体膜蛋白Tom20表达水平。结果:与对照组相比,线粒体膜电位水平及心肌组织ATP含量于再灌注2 h开始下降,24 h下降最显著,48 h有所改善,线粒体超微结构损伤再灌注24 h最为明显,48 h有所改善。PINK1、Parkin、p62蛋白表达于损伤后2 h增强,于再灌注后24 h升高最显著,持续至48 h,LC3BⅡ表达于损伤后24 h增强,同样持续至48 h。透射电镜下可见线粒体自噬体于再灌注后24 h明显增多,并持续至48 h。结论:大鼠心肌缺血再灌注损伤后,线粒体功能与形态损伤以损伤后24 h最为显著,至损伤后48 h后好转;线粒体自噬水平升高以损伤后24 h最为显著,且维持至损伤后48 h,提示两者之间可能存在关联。  相似文献   
9.
Mitochondria are the foremost producers of the cellular energy currency ATP. They are also a significant source of reactive oxygen species and an important buffer of intracellular calcium. Mitochondrial retrograde signals regulate energy homeostasis and pro-survival elements whereas anterograde stimuli can trigger programmed cell death. Maintenance of a healthy, functional mitochondria network is therefore essential, and several mechanisms of mitochondrial quality control have been described. Mitochondrial dysfunction is linked to several neurodegenerative conditions including Parkinson, and Huntingdon diseases as well as Amyotrophic lateral sclerosis. Understanding the mechanisms governing mitochondrial quality control may reveal novel strategies for pharmacological intervention and disease therapy.  相似文献   
10.
Retinal ganglion cells (RGCs), which exist in the inner retina, are the retinal neurons which can be damaged in the early stage of diabetic retinopathy (DR). Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, exerts biological functions by binding the receptor (GLP-1R), the expression of which in RGC-5 cells was first shown by our team in 2012. It was reported that liraglutide prevented retinal neurodegeneration in diabetic subjects. However, the involvement of mechanisms such as autophagy and mitochondrial balance in liraglutide-induced retinal protection is unknown. Here, we aimed to investigate the protective effects of liraglutide and explore the potential mechanisms of liraglutide-induced retinal RGC protection. RGC-5 cells were treated with H2O2 and/or liraglutide. Cell viability was detected with the CCK-8 kit. The axon marker GAP43, autophagy and mitophagy indicators LC3A/B, Beclin-1, p62, Parkin, BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L) and the key regulator of mitochondrial biogenesis PGC-1α were examined via western blot analysis. Autophagy was also evaluated using the ImageXpress Micro XLS system and transmission electron microscopy (TEM). Reactive oxygen species (ROS), mitochondrial membrane potential and fluorescent staining for mitochondria were also measured using the ImageXpress Micro XLS system. Our results showed that pretreatment with liraglutide significantly prevented H2O2-induced cell viability decline, mitochondrial morphological deterioration and induction of autophagy, which appeared as increased expression of LC3 II/I and Beclin-1, along with p62 degradation. Moreover, liraglutide suppressed the H2O2-induced decline in GAP43 expression, thus protecting cells. However, rapamycin induced autophagy and blocked the protective process. Liraglutide also provided mitochondrial protection and appeared to alleviate H2O2-induced ROS overproduction and a decline in mitochondrial membrane potential, partially by promoting mitochondrial generation and attenuating mitophagy. In conclusion, liraglutide attenuates H2O2 induced RGC-5 cell injury by inhibiting autophagy through maintaining a balance between mitochondrial biogenesis and mitophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号