首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  2023年   1篇
  2013年   1篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Methanocaldococcus jannaschii has been notorious as an archaeon in which the replication origins are difficult to identify. Although extensive efforts have been exerted on this issue, the locations of replication origins still remain elusive 7 years after the publication of its complete genome sequence in 1996. Ambiguous results were obtained in identifying the replication origins of M. jannaschii based on all theoretical and experimental approaches. In the genome of M. jannaschii, we found that an ORF (MJ0774), annotated as a hypothetical protein, is a homologue of the Cdc6 protein. The position of the gene is at a global minimum of the x component of the Z curve, i.e., RY disparity curve, which has been used to identify replication origins in other Archaea. In addition, an intergenic region (694,540–695,226 bp) that is between the cdc6 gene and an adjacent ORF shows almost all the characteristics of known replication origins, i.e., it is highly rich in AT composition (80%) and contains multiple copies of repeat elements and AT stretches. Therefore, these lines of evidence strongly suggest that the identified region is a replication origin, which is designated as oriC1. The analysis of the y component of the Z curve, i.e., MK disparity curve, suggests the presence of another replication origin corresponding to one of the peaks in the MK disparity curve at around 1,388 kb of the genome.Communicated by G. Antranikian  相似文献   
2.
Recently, unusual non-regulated ATP-dependent 6-phosphofructokinases (PFK) that belong to the PFK-B family have been described for the hyperthermophilic archaea Desulfurococcus amylolyticus and Aeropyrum pernix. Putative homologues were found in genomes of several archaea including the hyperthermophilic archaeon Methanocaldococcus jannaschii. In this organism, open reading frame MJ0406 had been annotated as a PFK-B sugar kinase. The gene encoding MJ0406 was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 68 kDa composed of 34 kDa subunits. With a temperature optimum of 85°C and a melting temperature of 90°C, the M. jannaschii nucleotide kinase represents one of the most thermoactive and thermostable members of the PFK-B family described so far. The recombinant enzyme was characterized as a functional nucleoside kinase rather than a 6-PFK. Inosine, guanosine, and cytidine were the most effective phosphoryl acceptors. Besides, adenosine, thymidine, uridin and xanthosine were less efficient. Extremely low activity was found with fructose-6-phosphate. Further, the substrate specificity of closely related PFK-Bs from D. amylolyticus and A. pernix were reanalysed.  相似文献   
3.
The Z-curve is a three-dimensional curve that constitutes a unique representation of a DNA sequence, i.e., both the Z-curve and the given DNA sequence can be uniquely reconstructed from the other. We employed Z-curve analysis to identify one replication origin in the Methanocaldococcus jannaschii genome, two replication origins in the Halobacterium species NRC-1 genome and one replication origin in the Methanosarcina mazei genome. One of the predicted replication origins of Halobacterium species NRC-1 is the same as a replication origin later identified by in vivo experiments. The Z-curve analysis of the Sulfolobus solfataricus P2 genome suggested the existence of three replication origins, which is also consistent with later experimental results. This review aims to summarize applications of the Z-curve in identifying replication origins of archaeal genomes, and to provide clues about the locations of as yet unidentified replication origins of the Aeropyrum pernix K1, Methanococcus maripaludis S2, Picrophilus torridus DSM 9790 and Pyrobaculum aerophilum str. IM2 genomes.  相似文献   
4.
We describe a strategy for the rapid selection of mutant aminoacyl-tRNA synthetases (aaRS) with specificity for a novel amino acid based on fluorescence-activated cell sorting of transformed Escherichia coli using as reporter the enhanced green fluorescent protein (eGFP) whose gene carries an amber stop codon (TAG) at a permissive site upstream of the fluorophore. To this end, a one-plasmid expression system was developed encoding an inducible modified Methanocaldococcus jannaschii (Mj) tyrosyl-tRNA synthetase, the orthogonal cognate suppressor tRNA, and eGFPUAG in an individually regulatable fashion. Using this system a previously described aaRS with specificity for O-methyl-L-tyrosine (MeTyr) was engineered for 10-fold improved incorporation of the foreign amino acid by selection from a mutant library, prepared by error-prone as well as focused random mutagenesis, for MeTyr-dependent eGFP fluorescence. Applying alternating cycles of positive and negative fluorescence-activated bacterial cell sorting in the presence or in the absence, respectively, of the foreign amino acid was crucial to select for high specificity of MeTyr incorporation. The optimized synthetase was used for the preparative expression of a modified uvGFP carrying MeTyr at position 66 as part of its fluorophore. This biosynthetic protein showed quantitative incorporation of the non-natural amino acid, as determined by mass spectrometry, and it revealed a unique emission spectrum due to the altered chemical structure of its fluorophore. Our combined genetic/selection system offers advantages over earlier approaches that relied wholly or in part on antibiotic selection schemes, and it should be generally useful for the engineering and optimization of orthogonal aaRS/tRNA pairs to incorporate non-natural amino acids into recombinant proteins.  相似文献   
5.
6.
Vitali J  Colaneri MJ  Kantrowitz E 《Proteins》2008,71(3):1324-1334
The catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase is extremely heat stable, maintaining 75% of its activity after heat treatment for 60 min at 75 degrees C. We undertook its structural analysis in order to understand the molecular basis of its thermostability and gain insight on how its catalytic function adapts to high temperature. Several structural elements potentially contributing to thermostability were identified. These include: (i) changes in the amino acid composition such as a decrease in the thermolabile residues Gln and Asn, an increase in the charged residues Lys and Glu, an increase in Tyr and a decrease in Ala residues; (ii) a larger number of salt bridges, in particular, the improvement of ion-pair networks; (iii) shortening of the N-terminus and shortening of three loops. An interesting feature of the crystal structure is the association of two crystallographically independent catalytic subunits into a staggered complex with an intertrimer distance of 33.8 A. The active site appears similar to Escherichia coli. Upon substrate binding, smaller changes in the global orientation of domains and larger conformational changes of the active site residues are expected as compared to E. coli.  相似文献   
7.
DEAD box RNA helicases use the energy of ATP hydrolysis to unwind double-stranded RNA regions or to disrupt RNA/protein complexes. A minimal RNA helicase comprises nine conserved motifs distributed over two RecA-like domains. The N-terminal domain contains all motifs involved in nucleotide binding, namely the Q-motif, the DEAD box, and the P-loop, as well as the SAT motif, which has been implicated in the coordination of ATP hydrolysis and RNA unwinding. We present here the crystal structure of the N-terminal domain of the Thermus thermophilus RNA helicase Hera in complex with adenosine monophosphate (AMP). Upon binding of AMP the P-loop adopts a partially collapsed or half-open conformation that is still connected to the DEAD box motif, and the DEAD box in turn is linked to the SAT motif via hydrogen bonds. This network of interactions communicates changes in the P-loop conformation to distant parts of the helicase. The affinity of AMP is comparable to that of ADP and ATP, substantiating that the binding energy from additional phosphate moieties is directly converted into conformational changes of the entire helicase. Importantly, the N-terminal Hera domain forms a dimer in the crystal similar to that seen in another thermophilic prokaryote. It is possible that this mode of dimerization represents the prototypic architecture in RNA helicases of thermophilic origin.  相似文献   
8.
Phosphoribosyl pyrophosphate (PRPP) synthetase catalyzes the transfer of the pyrophosphate group from ATP to ribose-5-phosphate (R5P) yielding PRPP and AMP. PRPP is an essential metabolite that plays a central role in cellular metabolism. The enzyme from a thermophilic archaeon Thermoplasma volcanium (Tv) was expressed in Escherichia coli, crystallized, and its X-ray molecular structure was determined in a complex with its substrate R5P and with substrate analogs β,γ-methylene ATP and ADP in two monoclinic crystal forms, P21. The β,γ-methylene ATP- and the ADP-bound binary structures were determined from crystals grown from ammonium sulfate solutions; these crystals diffracted to 1.8 Å and 1.5 Å resolutions, respectively. Crystals of the ternary complex with ADP-Mg2+ and R5P were grown from a polyethylene glycol solution in the absence of sulfate ions, and they diffracted to 1.8 Å resolution; the unit cell is approximately double the size of the unit cell of the crystals grown in the presence of sulfate. The Tv PRPP synthetase adopts two conformations, open and closed, at different stages in the catalytic cycle. The binding of substrates, R5P and ATP, occurs with PRPP synthetase in the open conformation, whereas catalysis presumably takes place with PRPP synthetase in the closed conformation. The Tv PRPP synthetase forms a biological dimer in contrast to the tetrameric or hexameric quaternary structures of the Methanocaldococcus jannaschii and Bacillus subtilis PRPP synthetases, respectively.  相似文献   
9.
Abstract: A series of experiments was conducted to determine the capacity of an archaeal strain, Methanocaldococcus jannaschii, to bind metals and to study the effects of metal binding on the subsequent silicification of the microorganisms. The results showed that M. jannaschii can rapidly bind several metal cations (Fe3+, Ca2+, Pb2+, Zn2+, Cu2+). Considering the lack of silicification of this strain without metal binding, these experiments demonstrate that Fe(III) ion binding to the cell wall components was of fundamental importance for successful silicification and, especially, for the excellent preservation of the cell wall. This study brings new elements to the understanding of fossilization processes, showing that the positive effect of Fe(III) on silicification, already known for Bacteria, can also apply to Archaea and that this preliminary binding can be decisive for the subsequent fossilization of these organisms. Knowledge of these mechanisms can be helpful for the search and the identification of microfossils in both terrestrial and extraterrestrials rocks, and in particular on Mars.  相似文献   
10.
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg2+-dependent 5′ maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号