首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   10篇
  国内免费   3篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   18篇
  2013年   23篇
  2012年   10篇
  2011年   15篇
  2010年   10篇
  2009年   14篇
  2008年   10篇
  2007年   10篇
  2006年   10篇
  2005年   4篇
  2004年   11篇
  2003年   4篇
  2002年   11篇
  2001年   7篇
  2000年   13篇
  1999年   4篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1991年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有241条查询结果,搜索用时 62 毫秒
1.
Meta‐analyses evaluating the association between the serotonin transporter polymorphism (5‐HTTLPR) with neuroticism and depression diagnosis as phenotypes have been inconclusive. We examined a gene–environment interaction on a cognitive vulnerability marker of depression, cognitive reactivity (CR) to sad mood. A total of 250 university students of European ancestry were genotyped for the 5‐HTTLPR, including SNP rs25531, a polymorphism of the long allele. Association analysis was performed for neuroticism, CR and depression diagnosis (using a self‐report measure). As an environmental pathogen, self‐reported history of childhood emotional abuse was measured because of its strong relationship with depression. Participants with the homozygous low expressing genotype had high CR if they had experienced childhood emotional maltreatment but low CR if they did not have such experience. This interaction was strongest on the Rumination subscale of the CR measure. The interaction was not significant with neuroticism or depression diagnosis as outcome measures. Our results show that 5‐HTTLPR is related to cognitive vulnerability to depression. Our findings provide evidence for a differential susceptibility genotype rather than a vulnerability genotype, possibly because of the relatively low levels of abuse in our sample. The selection of phenotype and environmental contributor is pivotal in investigating gene–environment interactions in psychiatric disorders.  相似文献   
2.
Intracerebroventricular administration of vasoactive intestinal peptide (VIP) shortened the duration of pentobarbital-induced sleep and produced significant hypermotility in the rat. Although hypermotility induced by methamphetamine was not potentiated by central administration of VIP, L-DOPA-induced hypermotility in pargyline-pretreated rats was markedly enhanced by VIP and this hypermotility was suppressed by simultaneous administration of cholecystokinin octapeptide (CCK-8) in a dose-related manner. Apomorphine-induced hypermotility was also potentiated by VIP. These results suggest that VIP may stimulate postsynaptic dopaminergic receptor, causing an increase in motility, and that a possible reciprocal interaction exists between VIP and CCK-8.  相似文献   
3.
Abstract: When incubated with a hydroxyl radical (HO?)-generating system (ascorbic acid/Fe2+-EDTA/O2/H2O2), 5-hydroxytryptamine (5-HT; serotonin) is rapidly oxidized initially to a mixture of 2,5-, 4,5-, and 5,6-dihydroxytryptamine (DHT). The major reaction product is 2,5-DHT, which at physiological pH exists as its keto tautomer, 5-hydroxy-3-ethylamino-2-oxindole (5-HEO). Rapid autoxidation of 4,5-DHT gives tryptamine-4,5-dione (T-4,5-D), which reacts with the C(3)-centered carbanion of 5-HEO to give 3,3′-bis(2-aminoethyl)-5-hydroxy-[3,7′-bi-1H-indole]-2,4′,5′-3H-trione (7). The latter slowly cyclizes to 3′-(2-aminoethyl)-1′,6′,7′,8′-tetrahydro-5-hydroxyspiro[3H-indole-3,9′-[9H]pyrrolo[2,3-f]quinoline]-2,4′,5′(1H)- trione (9). A minor amount of T-4,5-D dimerizes to give 7,7′-bi-(5-hydroxytryptamine-4-one) (7,7′-D). In the presence of GSH, the reaction of T-4,5-D with 5-HEO is diverted and, in the presence of sufficient concentrations of this tripeptide, completely blocked. This is because GSH preferentially reacts with T-4,5-D to give 7-S-glutathionyltryptamine-4,5-dione (11). The results of this investigation suggest that 5,6-DHT, 5-HEO, 7, and 9 are products unique to the HO?-mediated oxidation of 5-HT. Thus, the observation of other investigators that 5,6-DHT is formed in the brains of rats following a large dose of methamphetamine (MA) suggests that this drug might evoke HO? formation. However, the present in vitro study indicates that 5,6-DHT is a rather minor, unstable product of the HO?-mediated oxidation of 5-HT and suggests that detection of 5-HEO, 7/9, and 11 in rat brain following MA administration could provide additional support for HO? formation. Furthermore, one or more of the intermediates and major products of oxidation of 5-HT by HO? might, in addition to 5,6-DHT, contribute to the MA-induced degeneration of serotonergic neurons.  相似文献   
4.
Abstract: Oxygen radicals have been implicated in the neurodegenerative and other neurobiological effects evoked by methamphetamine (MA) in the brain. It has been reported that shortly after a single large subcutaneous dose of MA to the rat, the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) is formed in the cortex and hippocampus. This somewhat controversial finding suggests that MA potentiates formation of the hydroxyl radical (HO?) that oxidizes 5-hydroxytryptamine (5-HT) to 5,6-DHT, which, in turn, mediates the degeneration of serotonergic terminals. A major and more stable product of the in vitro HO?-mediated oxidation of 5-HT is 5-hydroxy-3-ethylamino-2-oxindole (5-HEO). In this investigation, a method based on HPLC with electrochemical detection (HPLC-EC) has been developed that permits measurement of very low levels of 5-HEO in rat brain tissue in the presence of biogenic amine neurotransmitters/metabolites. After intracerebroventricular administration into rat brain, 5-HEO is transformed into a single major, but unknown, metabolite that can be detected by HPLC-EC. One hour after administration of MA (100 mg/kg s.c.) to the rat, massive decrements of 5-HT were observed in all regions of the brain examined (cortex, hippocampus, medulla and pons, midbrain, and striatum). However, 5-HEO, its unidentified metabolite, or 5,6-DHT were not detected as in vivo metabolites of 5-HT. MA administration, in particular to rats pretreated with pargyline, resulted in the formation of low levels of N-acetyl-5-hydroxytryptamine (NAc-5-HT) in all brain regions examined. These results suggest that MA does not potentiate the HO?-mediated oxidation of 5-HT. Furthermore, the rapid MA-induced decrease of 5-HT might not only be related to oxidative deactivation of tryptophan hydroxylase, as demonstrated by other investigators, but also to the inhibition of tetrahydrobiopterin biosynthesis by NAc-5-HT. The massive decrements of 5-HT evoked by MA are accompanied by small or no corresponding increases in 5-hydroxyindole-3-acetic acid (5-HIAA) levels. This is due, in part, to the relatively rapid clearance of 5-HIAA from the brain and monoamine oxidase (MAO) inhibition by MA. However, the loss of 5-HT without corresponding increases in its metabolites point to other mechanisms that might deplete the neurotransmitter, such as oxidation by superoxide radical anion (O2??), a reaction that in vitro does not generate 5-HEO or 5,6-DHT but rather another putative neurotoxin, tryptamine-4,5-dione. One hour after administration, MA evokes large depletions of norepinephrine (NE) throughout the brain but somewhat smaller decrements of dopamine (DA) that are restricted to the nigrostriatal pathway. Furthermore, MA evokes a major shift in the metabolism of both NE and DA from the pathway mediated by MAO to that mediated by catechol-O-methyltransferase. The profound and widespread effects of MA on the noradrenergic system, but more anatomically localized influence on the dopaminergic system, suggests that NE in addition to DA, or unusual metabolites of these neurotransmitters, might play roles in the neurodegenerative effects evoked by this drug.  相似文献   
5.
Abstract: p53-knockout mice provide a useful model to test the role of p53 in the neurotoxic effects of drugs in vivo. To test the involvement of p53 in methamphetamine (METH)-induced toxicity, wild-type mice, as well as heterozygous and homozygous p53-knockout male mice, were administered four injections of three different doses (2.5, 5.0, and 10.0 mg/kg) of the drug given at 2-h intervals within the space of 1 day. METH caused a marked dose-dependent loss of dopamine transporters in both the striatum and the nucleus accumbens of wild-type mice killed 2 weeks after drug administration. However, this METH-induced decrease in dopamine transporters was attenuated in both homozygous and heterozygous p53-knockout mice, with homozygous animals showing significantly greater protection. The possibility for p53 involvement in METH-induced toxicity was also supported by the observation that METH caused marked increases in p53-like immunoreactivity in the striata of wild-type mice and very little change in heterozygous p53-knockout mice, whereas no p53-like immunostaining was detected in the homozygous p53-knockout mice. Further support for p53 involvement was provided by the fact that METH treatment caused significant decreases in dopamine transporter mRNA and the number of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta and the ventral tegmental area of wild-type but not homozygous p53-knockout mice killed 2 weeks after cessation of METH administration. These results provide concordant evidence for a role of the tumor suppressor, p53, in the long-term deleterious effects of a drug acting on brain dopamine systems.  相似文献   
6.
The study of child abuse and child homicide has been based on the often implicit assumption that there is a continuum of violence ranging from mild physical punishment to severe abuse and homicide. Empirical data supporting this assumption are sparse. Existing data can be shown, however, to support an assumption that there are distinct forms of violence, not a continuum. This paper reviews these data and discusses their implications for the study of violence, abuse, and homicide in terms of substantive and methodological explanations. In addition, the implications of the assumption that violence consists of distinct behaviors as opposed to a continuum are discussed in light of sociobiological and evolutionary explanations of child abuse and child homicide. This paper was written under the auspices of the Family Violence Research Program at the University of Rhode Island. A complete list of books and articles is available upon request. Richard J. Gelles is Professor of Sociology and Anthropology and the Director of the Family Violence Research Program at the University of Rhode Island. He is the author or coauthor of 14 books and more than 90 articles and chapters on family violence. His most recent books areIntimate Violence, published in 1988 by Simon and Schuster;Physical Violence in American Families: Risk Factors and Adaptations in 8,145 Families, published by Transaction Books in 1990; andIntimate Violence in Families, published in 1990 by Sage Publications.  相似文献   
7.
We examined the effects of chronic ethanol exposure on the levels of N -methyl-D-aspartate receptor subunit 1 (NMDAR1) protein, an essential component of N -methyl-D-aspar- tate glutamate receptors, in rat brain. By immunoblotting procedures using a specific antibody for the NMDAR1 subunit, we found that ethanol dramatically up-regulated (by 65%) NMDAR1 immunoreactivity in the hippocampus but not in the nucleus accumbens, cerebral cortex, or striatum. In contrast, ethanol did not alter the levels of glutamate receptor subunit (GLUR) 1 or GLUR2 protein, subunits that make up the α-amino-3-hydroxy-5-methy4-isoxazole propionic acid glutamate receptor, in the hippocampus. Because ethanol can potentially influence many different neurotransmitter systems, we examined whether chronic treatment with several psychotropic drugs with different pharmacological profiles (cocaine, haloperidol, SCH 23390, imipramine, and morphine) could mimic the effect of ethanol. None of these agents increased hippocampal NMDAR1 subunit immunoreactivity after chronic administration. Increased NMDAR1 subunit levels in the hippocampus after chronic ethanol exposure may represent an important neurochemical substrate for some of the features associated with ethanol dependence and withdrawal.  相似文献   
8.
9.
10.
A fundamental challenge for any complex nervous system is to regulate behavior in response to environmental challenges. Three measures of behavioral‐regulation were tested in a panel of eight inbred rat strains. These measures were: (1) sensation seeking as assessed by locomotor response to novelty and the sensory reinforcing effects of light onset, (2) attention and impulsivity, as measured by a choice reaction time task and (3) impulsivity as measured by a delay discounting task. Deficient behavioral‐regulation has been linked to a number of psychopathologies, including ADHD, Schizophrenia, Autism, drug abuse and eating disorders. Eight inbred rat strains (August Copenhagen Irish, Brown Norway, Buffalo, Fischer 344, Wistar Kyoto, Spontaneous Hypertensive Rat, Lewis, Dahl Salt Sensitive) were tested. With n = 9 for each strain, we observed robust strain differences for all tasks; heritability was estimated between 0.43 and 0.66. Performance of the eight inbred rat strains on the choice reaction time task was compared to the performance of outbred Sprague Dawley (n = 28) and Heterogeneous strain rats (n = 48). The results indicate a strong genetic influence on complex tasks related to behavioral‐regulation and indicate that some of the measures tap common genetically driven processes. Furthermore, our results establish the potential for future studies aimed at identifying specific alleles that influence variability for these traits. Identification of such alleles could contribute to our understanding of the molecular genetic basis of behavioral‐regulation, which is of fundamental importance and likely contributes to multiple psychiatric disorders .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号