首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2018年   1篇
  2013年   1篇
  2007年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有5条查询结果,搜索用时 38 毫秒
1
1.
Increasing land use intensity and human influence are leading to a reduction in plant and animal species diversity. However, little is known about how these changes may affect higher trophic levels, apart from simply reducing species numbers. Here we investigated, over 3 years, the influence of different land practices on a tritrophic system in grassland habitats. The system consisted of the host plant Plantago lanceolata L. (Plantaginaceae), two monophagous weevils, Mecinus labilis Herbst and Mecinus pascuorum Gyllenhal (Coleoptera: Curculionidae), and their parasitoid Mesopolobus incultus Walker (Hymenoptera: Pteromalidae). At over 70 sites across three geographic regions in Germany, we measured plant species diversity and vegetation structure, as well as abundance of P. lanceolata, the two weevils, and the parasitoid. Land use intensity (fertilization) and type (mowing vs. grazing) negatively affected not only plant species richness but also the occurrence of the two specialized herbivores and their parasitoid. In contrast, land use had a mostly positive effect on host plant size, vegetation structure, and parasitization rate. This study reveals that intensification of land use influences higher trophic organisms even without affecting the availability of the host plant. The observed relationships between land use, vegetation complexity, and the tritrophic system are not restricted locally; rather they are measureable along a broad range of environmental conditions and years throughout Germany. Our findings may have important implications for the conservation of insect species of nutrient‐poor grasslands.  相似文献   
2.
Mecinus janthinus Germar is a European stem-mining weevil that has been established in North America as a biological control agent against the invasive European weeds Linaria vulgaris P. Mill. and Linaria dalmatica (L.) P. Mill. (Scrophulariaceae). Establishment success and impact of the weevil have varied widely among sites. We investigated the hypothesis that some of this variation may be due to a lack of sufficient time for M. janthinus to develop to the adult (overwintering) stage in less favorable climates. Development time of M. janthinus was measured in L. vulgaris and L. dalmatica at four constant temperatures, and logistic regression was used to derive a model for the effect of temperature on development. Development rates were simulated using historic climate data for a site in central Alberta (where establishment was marginal on L. vulgaris) and one in southern British Columbia (where outbreaks occurred, resulting in heavy damage to L. dalmatica). The model showed that, on average, the British Columbia site had 50 more days available for the weevil to lay eggs that could reach the adult stage in time for overwintering than did the Alberta site. This may explain the more rapid population buildup at the British Columbia site. This model could be used to predict the climatic suitability of other areas for establishment of M. janthinus. An unexplained result was the very low survival rate of eggs laid in L. dalmatica under the same experimental conditions.  相似文献   
3.
Linaria vulgaris, common or yellow toadflax, and Linaria dalmatica, Dalmatian toadflax (Plantaginaceae), are Eurasian perennial forbs invasive throughout temperate North America. These Linaria species have been the targets of classical biological control programmes in Canada and the USA since the 1960s. The first effective toadflax biological control agent, the stem‐mining weevil Mecinus janthinus (Coleoptera: Curculionidae) was introduced from Europe in the 1990s. This weevil has become established on L. dalmatica and L. vulgaris in both countries, although it has shown greater success in controlling the former toadflax species. Genetic and ecological studies of native range M. janthinus populations revealed that weevils previously identified as a single species in fact include two cryptic species, now recognised as M. janthinus, associated with yellow toadflax, and the recently confirmed species Mecinus janthiniformis, associated with Dalmatian toadflax. The results of a comprehensive study characterising haplotype identities, distributions and frequencies within M. janthinus s.l. native range source populations were compared to those populations currently established in the USA and Canada. The presence of both Mecinus species in North America was confirmed, and revealed with a few exceptions a high and consistent level of host fidelity throughout the adopted and native ranges. Genetic analysis based on mitochondrial cytochrome oxidase subunit II gene (mtCOII) defined the origin and records the subsequent North American establishment, by haplotype, of the European founder populations of M. janthinus (northern Switzerland and southern Germany) and M. janthiniformis (southern Macedonia), and provided population genetic indices for the studied populations. This analysis together with existing North American shipment receipt, release and rearing records elucidates probable redistribution routes and sources of both weevil species from initially released and established adopted range populations.  相似文献   
4.
An experiment with potted Linaria dalmatica (L.) Mill. was set up to test the effects of root‐feeding by Eteobalea (syn. Stagmatophora) intermediella Riedl (Lep. Cosmopterigidae) and stem‐mining by Mecinus janthinus Germar (Col. Curculionidae), as well as the interaction among the insects and the developmental stage of the host plant. During the summer season, mining by M. janthinus decreased the stem biomass substantially, while E. intermediella did not produce statistically significant effects on the performance of host plant individuals (the experimental conditions represented the effect of the univoltine M. janthinus adequately, but the potentially important effect of mining by the second generation of E. intermediella, at the beginning of the growing season, was not assessed). M. janthinus survived almost exclusively on plants in the flowering stage, although adult females readily used vegetative (younger) plants for oviposition. E. intermediella had a higher chance of survival on vegetative plants. Both species have recently been released as biological control agents on L. dalmatica in North America. For this purpose the complementary survival rates on the two developmental stages of the host plant is advantageous.  相似文献   
5.
The biology and host specificity of Mecinus janthinus Germar, an oligophagous, univoltine stem‐borer of Linaria spp. are discussed. The results of feeding and oviposition tests with 38 species in 13 families and of larval transfer tests with four plant species are presented. They show that M. janthinus is restricted to the genus Linaria and does not develop on snapdragon Antirrhinum majus, an important ornamental in North America. The weevil is widely distributed in Europe. It accepts and develops normally on plants from the target North American toadflax populations. Therefore, it should be relatively easy to establish M. janthinus where the control of L. dalmatica and L. vulgaris is required. The release of M. janthinus in Canada and the USA is recommended.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号