首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  国内免费   6篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
Summary The zone of endosperm breakdown in the germinated date seed (Phoenix dactylifera L.) is a narrow area immediately adjacent to the surface of the enlarging cotyledon, or haustorium. The zone width is correlated with the amount of cell division in the adjacent region of the haustorium. The sequence of endosperm breakdown is: 1. protein bodies vacuolate, 2. storage cell walls become electron-transparent immediately adjacent to the protoplast of each endosperm cell, 3. all remaining cytoplasm and lipid bodies disappear, and 4. the remaining cell walls become electron-transparent and collapse against the haustorium surface. Two cell wall hydrolases are present—endo-mannanase (EC3.2.1.78) and -mannosidase (EC3.2.1.25). -mannosidase is detectable in the endosperm before germination. At germination, the major portion of activity is found in the softened endosperm. -mannanase is only detectable from germination and there is always hundreds of fold greater activity in the softened endosperm than elsewhere. Proteinase is detectable in trace amounts at germination in the softened endosperm but is also found in the haustorium at later stages. Isolated haustoria, incubated in extracted ivory nut (Phytelephas macrocarpa) mannan in buffer, cause no mannan breakdown. Haustoria, incubated in a solution of locust bean galactomannan, cause no decrease in galactomannan viscosity. Our observations suggest that although haustoria probably regulate mannan breakdown in the endosperm, they do not seem to secrete the hydrolytic enzymes concerned.  相似文献   
2.
Summary Thielavia terrestris NRRL 8126 cell free supernatants contained mannanase and -mannosidase when cultured on a complex media containing locust bean gum. Using acetone precipitation, SP-Sephadex C50 ion exchange chromatography and preparative gel electrophoresis, the crude enzyme was resolved into one -d-mannosidase and four -d-mannanase components. -d-mannosidase had a specific activity of 0.02 (U/mg) onp-nitrophenyl--d-mannopyranoside substrate. Mannanase components M1, M2, M3 and M4 had specific activities of 28.2, 38.7, 52.8 and 4.17 (U/mg) respectively on purified locust bean galactomannan substrate. pH optima for the enzymes were in the range 4.5–5.5. Mannanase component M4 manifested the greatest thermostability, retaining full activity for 3 h at 60°C. Molecular weights determined by SDS-PAGE were 72 000 for -mannosidase and 52 000, 30 000, 55 000 and 89 000 for M1, M2, M3 and M4 respectively. Carbohydrate contents of the enzymes ranged from 6–36%. Preliminary studies indicate that enzyme components hydrolyse the mannan substrate in a synergistic manner.  相似文献   
3.
Summary Extracellular mannanase activity produced bySporotrichum cellulophilum was purified into two components using acetone precipitation, SP-Sephadex C50 ion exchange chromatography and preparative polyacrylamide gel electrophoresis. The purified mannanse components, M1 and M2, had molecular weights of 108 000–112 000 and 32 200–36 000 respectively. Component M1 was shown to contain 2 subunits having molecular weights of 62 000 and 50 000. M1 and M2 had similar pH-activity profiles with pH optima of 5.5 and 6.0 respectively. M1 was more thermostable than M2: half lives of the enzymes at 70°C were 30 and 9 min for M1 and M2 respectively.  相似文献   
4.
Bacillus sp. CSB39, isolated from popular traditional Korean food (Kimchi), produced a low molecular weight, thermostable mannanase (MnCSB39); 571.14 U/mL using locust bean gum galactomannan as a major substrate. It was purified to homogeneity using a simple and effective two-step purification strategy, Sepharose CL-6B and DEAE Sepharose Fast Flow, which resulted in 25.47% yield and 19.32-fold purity. The surfactant-, NaCl-, urea-, and protease-tolerant monomeric protein had a mass of ∼30 kDa as analyzed by SDS-PAGE and galactomannan zymography. MnCSB39 was found to have optimal activity at pH 7.5 and temperature of 70 °C. The enzyme showed ˃55% activity at 5.0–15% (w/v) NaCl, and ˃93% of the initial activity after incubation at 37 °C for 60 min. Trypsin and proteinase K had no effect on MnCBS39. The enzyme showed ˃80% activity in up to 3 M urea. The N-terminal amino acid sequence, ALKGDGX, did not show identity with reported mannanases, which suggests the novelty of our enzyme. Activation energy for galactomannan hydrolysis was 26.85 kJmol−1 with a Kcat of 142.58 × 104 s−1. MnCSB39 had Km and Vmax values of 0.082 mg/mL and 1099 ± 1.0 Umg−1, respectively. Thermodynamic parameters such as ΔH, ΔG, ΔS, Q10, ΔGE-S, and ΔGE-T supported the spontaneous formation of products and the high hydrolytic efficiency and feasibility of the enzymatic reaction, which strengthen its novelty. MnCSB39 activity was affected by metal ions, modulators, chelators, and detergents. Mannobiose was the principal end-product of hydrolysis. Bacillus subtilis CSB39 produced a maximum of 1524.44 U mannanase from solid state fermentation of 1 g wheat bran. MnCSB39 was simple to purify, was active at a wide pH and temperature range, multi-stress tolerant and catalyzes a thermodynamically possible reaction, characteristics that suggests its suitability for application as an industrial biocatalyst.  相似文献   
5.
Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase and mannanase, singly or in combination, either sequentially or simultaneously. Enzymes were obtained from Streptomyces galbus NR that had been cultivated in a medium, containing either xylan of sugar cane bagasse or galactomannan of palm-seeds, when they were used as sole carbon sources from local wastes in fermentation media. No cellulase activity was detected. Incubation period, temperature, initial pH values and nature of nutritive constituents were investigated. Optimum production of both enzymes was achieved after 5 days incubation on a rotary shaker (200 rpm) at 35 degrees C and initial pH 7.0. Partial purification of xylanase and mannanase in the cultures supernatant were achieved by salting out at 40-60 and 60-80% ammonium sulphate saturation with a purification of 9.63- and 8.71-fold and 68.80 and 62.79% recovery, respectively. The xylanase and mannanase from S. galbus NR have optimal activity at 50 and 40 degrees C, respectively. Both enzymes were stable at a temperature up to 50 degrees C. Xylanase and mannanase showed highest activity at pH 6.5 and were stable from 5.0 to 8.0 and from 5.5 to 7.5, respectively. The partial purified enzymes preparations of xylanase and mannanase enzymes showed high bleaching activity, which is an important consideration for industry. Xylanase was found to be more effective for paper-bleaching than mannanase. When xylanase and mannanase were dosed together (simultaneously), both enzymes were able to enhance the liberation of reducing sugars and improve pulp bleachability, possibly as a result of nearly additive interactions. The simultaneous addition of both enzymes was more effective in pulp treatment than their sequential addition.  相似文献   
6.
Mannanase is an important enzyme involved in the degradation of mannan, production of bioactive oligosaccharides, and biobleaching of kraft pulp. Mannanase must be thermostable for use in industrial applications. In a previous study, we found that the thermal stability of mannanase from Streptomyces thermolilacinus (StMan) and Thermobifida fusca (TfMan) is enhanced by calcium. Here, we investigated the relationship between the three-dimensional structure and primary sequence to identify the putative calcium-binding site. The results of site-directed mutagenesis experiments indicated that Asp-285, Glu-286, and Asp-287 of StMan (StDEDAAAdC) and Asp-264, Glu-265, and Asp-266 of TfMan (TfDEDAAAdC) were the key residues for calcium binding affinity. Isothermal titration calorimetry revealed that the catalytic domain of StMan and TfMan (StMandC and TfMandC, respectively) bound calcium with a Ka of 3.02 × 104 M−1 and 1.52 × 104 M−1, respectively, both with stoichiometry consistent with one calcium-binding site per molecule of enzyme. Non-calcium-binding mutants (StDEDAAAdC and TfDEDAAAdC) did not show any calorimetric change. From the primary structure alignment of several mannanases, the calcium-binding site was found to be highly conserved in GH5 bacterial mannanases. This is the first study indicating enhanced thermal stability of GH5 bacterial mannanases by calcium binding.  相似文献   
7.
In order to select bacterial strains effectively secreting mannanase activity for the production of prebiotic mannooligosaccharides, a two-step screening procedure was performed. Enriched cultures from isolation medium containing copra meal were primary screened on an isolation agar medium containing 1% locust bean gum (LBG), which resulted in 48 mannanase-producing bacterial isolates with significant clearing zones on the mannan-containing agar. However, only nine isolates showed appreciable mannanase activities against copra meal in their culture supernatants (0.054–0.185 U/mg of protein) as determined in a standard assay based on the detection of reducing sugars released from this substrate. The isolates CW2-3 and ST1-1 displayed the highest activity against LBG and copra meal, respectively. Copra mannan hydrolysates that were obtained by using crude mannanase from these nine isolates were further used for a secondary screening towards a growth-enhancing activity on Lactobacillus reuteri and inhibitory activity against Escherichia coli as well as Salmonella Enteritidis, resulting in 0.09–2.15 log CFU/ml enhancing activity and low inhibitory activity of 0.46–1.78 log CFU/ml as well as 0.37–1.72 log CFU/ml, respectively. The hydrolysate of CW2-3 mannanase showed the highest enhancing activity of 2.15 log CFU/ml while isolate ST1-1 was most effective with respect to growth inhibition against E. coli E010 and S. Enteritidis S003 with 0.76 and 1.61 log CFU/ml, respectively. Based on morphological, physical, biochemical and genetics properties, isolates CW2-3 and ST1-1 were identified as Klebsiella oxytoca and Acinetobacter sp., respectively. Crude mannanase activity from these two strains was characterized preliminarily. The pH optima of mannanase activity from Klebsiella oxytoca CW2-3 and Acinetobacter sp. ST1-1 were 7 and 6, respectively. The enzymes were stable at 4°C over a pH range of 3–6 and 3–10, respectively.  相似文献   
8.
The filamentous fungus Penicillium brasilianum IBT 20888 was cultivated on a mixture of 30 g l−1 cellulose and 10 g l−1 xylan for 111 h and the resulting culture filtrate was used for protein purification. From the cultivation broth, five cellulases and one xylanase were purified. Hydrolysis studies revealed that two of the cellulases were acting as cellobiohydrolases by being active on only microcrystalline cellulose (Avicel). Three of the cellulases were active on both Avicel and carboxymethyl cellulose indicating endoglucanase activity. Two of these showed furthermore mannanase activity by being able to hydrolyze galactomannan (locust bean gum). Adsorption studies revealed that the smaller of the two enzymes was not able to bind to cellulose. Similarity in molecular mass, pI and hydrolytic properties suggested that these two enzymes were identical, but the smaller one was lacking the cellulose-binding domain or an essential part of it. The basic xylanase (pI>9) was only active towards xylan. Two of the purified cellulases with endoglucanase activity were partly sequenced and based on sequence homology with known enzymes they were classified as belonging to families 5 and 12 of the glycosyl hydrolases.  相似文献   
9.
Eighty‐eight fungi isolated from soil and decaying organic matter were screened for mannanolytic activity. Twenty‐eight fungi produced extracellular mannanase on locust bean gum as evidenced by zone of hydrolysis produced on mannan agar gel. Six prominent producers, including four Fusarium species namely Fusarium fusarioides NFCCI 3282, Fusarium solani NFCCI 3283, Fusarium equiseti NFCCI 3284, Fusarium moniliforme NFCCI 3287 with Cladosporium cladosporioides NFCCI 3285 and Acrophialophora levis NFCCI 3286 produced the β‐mannanase in the range of 84–140 nkat/mL. All these grew well on particulate substrates in solid‐state fermentation (SSF), producing relatively higher titers on mannan‐rich palm kernel cake (PKC) and copra meal. Two high yielding strains, F. equiseti (1747 nkat/gds) and A. levis (897 nkat/gds) were selected for statistical optimization of mannanase on PKC. Interaction of two critical solid state fermentation parameters, pH and moisture on mannanase production by these two molds was studied by response surface method. Optimized production on PKC resulted in three‐ to fourfold enhancement in enzyme yield was observed in case of F. equiseti (5945 nkat/gds) and A. levis (4726 nkat/gds). HPLC analysis of mannan hydrolysate indicated that F. equiseti and A. levis mannanase performed efficient hydrolysis of konjac gum (up to 99%) with exclusive mannooligosaccahride (DP of 4) production. A seminative SDS‐PAGE revealed that A. levis and F. solani produced three isoforms, F. moniliforme produced two isoforms while F. fusarioides, F. equiseti, and C. cladosporioides produced a single enzyme.  相似文献   
10.
毛壳霉CQ31的鉴定及固体发酵产木聚糖酶条件的优化   总被引:2,自引:0,他引:2  
从土壤中筛选出一株产木聚糖酶的真菌CQ31, 经鉴定后命名为毛壳霉CQ31。该菌能够利用几种农业废弃物固体发酵高产木聚糖酶, 玉米杆为最佳碳源。单因素优化试验表明: 以玉米杆为碳源, 胰蛋白胨为氮源, 初始水分含量80%, 初始pH值9.0为最佳产酶条件。在优化后的条件下培养7 d产木聚糖酶水平高达4897 U/g干基碳源, 此时甘露聚糖酶酶活达803 U/g干基碳源。因此, 毛壳霉CQ31固体发酵产木聚糖酶和甘露聚糖酶具有一定的工业化应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号