首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1984年   1篇
排序方式: 共有30条查询结果,搜索用时 68 毫秒
1.
2.
Astroglia cells structurally and nutritionally support neurons in the central nervous system. They play an important role in guiding the construction of the nervous system and controlling the chemical and ionic environment of neurons. They also represent the major sites for accumulation and immobilisation of toxic metal ions most probably connected with metallothioneins. For this reason astroglia cells possess high cytosolic levels of metallothioneins I, II and III (MT-I,II,III). Our aim was to establish the inducibility and metal binding of MTs in two human astrocytoma cell lines, U87 MG (astrocytoma–glioblastoma, grade IV) and IPDDC-2A (astrocytoma, grade II), on exposure to cadmium chloride (1 μM). MTs were identified by molecular weight (size exclusion chromatography) and their metal content (Cd, Zn and Cu) to follow the interactions between metals. We showed that MTs are constitutively expressed in both human astrocytoma cell lines. In accordance with the higher malignancy grade of U87 MG, the amount of MTs was higher in U87 MG than in IPDDC-2A cells. After 24 hours of exposure to Cd their expression greatly increased in both cell lines and they were capable of immobilising almost all water soluble Cd. Induction of MTs in U87 MG cells was additionally followed up to 48 hours with exposure to different concentrations of CdCl2 (1, 10 μM). Induction was a time dependent process throughout the period. Isoform III (identified by chromatographic separation of isoform III from I/II) was present at all exposure times, but only in traces with respect to the prevailing amounts of MT-I/II isoforms. So induction can be attributed to isoform I/II only.  相似文献   
3.
Unperturbed mitosis is a prerequisite for the generation of two genetically identical daughter cells. Nucleolar-spindle associated protein (NuSAP) is an important mitotic regulator. The activity of NuSAP is essential for a variety of cellular events that occur during mitosis starting from spindle assembly to cytokinesis. In addition to playing crucial roles during mitosis, NuSAP has been in the spotlight recently due to different studies exhibiting its importance in embryogenesis and cancer. In this review, we have extensively mined the current literature and made connections between different studies involving NuSAP. Importantly, we have assembled data pertaining to NuSAP from several proteomic studies and analyzed it thoroughly. Our review focuses on the role of NuSAP in mitosis and cancer, and brings to light several unanswered questions regarding the regulation of NuSAP in mitosis and its role in carcinogenesis.  相似文献   
4.
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and rho(0) (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca(2+) influx rates observed in 98% NARP and rho(0), in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells.  相似文献   
5.
Wang H  Zhang Q  Cai B  Li H  Sze KH  Huang ZX  Wu HM  Sun H 《FEBS letters》2006,580(3):795-800
Alzheimer's disease is characterized by progressive loss of neurons accompanied by the formation of intraneural neurofibrillary tangles and extracellular amyloid plaques. Human neuronal growth inhibitory factor, classified as metallothionein-3 (MT-3), was found to be related to the neurotrophic activity promoting cortical neuron survival and dendrite outgrowth in the cell culture studies. We have determined the solution structure of the alpha-domain of human MT-3 (residues 32-68) by multinuclear and multidimensional NMR spectroscopy in combination with the molecular dynamic simulated annealing approach. The human MT-3 shows two metal-thiolate clusters, one in the N-terminus (beta-domain) and one in the C-terminus (alpha-domain). The overall fold of the alpha-domain is similar to that of mouse MT-3. However, human MT-3 has a longer loop in the acidic hexapeptide insertion than that of mouse MT-3. Surprisingly, the backbone dynamics of the protein revealed that the beta-domain exhibits similar internal motion to the alpha-domain, although the N-terminal residues are more flexible. Our results may provide useful information for understanding the structure-function relationship of human MT-3.  相似文献   
6.
利用免疫荧光定位及激光共聚焦扫描显微镜,结合细胞生长曲线的定量测定,对不同生长阶段的轮藻节间细胞微管骨架进行了观察研究,结果如下:轮藻顶端生长活跃的新生细胞中,与细胞长轴垂直的周质微管(cortical microtubules)占绝对优势,随着生长速率的减慢,周质微管由垂直于细胞长轴逐渐转为平行排列;基部生长基本停止的节间细胞中,胞内微管则以平行细胞长轴为主;不同生长阶段节间细胞的微管骨架,对微管特异解聚剂黄草消(oryzalin)处理的敏感性表现不相同。顶端生长活跃的节间细胞经oryzalin处理40min后,绝大多数周质微管发生解聚;而基部生长基本停止的老细胞中,即使延长处理时间,仍残留一些尚未完全解聚的微管片段;10μmol/L微管解聚剂oryzalin处理轮藻顶端新生细胞,在高精度的细胞伸长生长测定装置监测下,发现oryzalin对细胞的伸长生长速率有明显的抑制作用,去掉药剂后,伸长生长又有一定的恢复。并且发现,经o-ryzalin处理后,微管的解聚(40min左右)与顶端节间细胞伸长生长的停止(100min左右)两者间存在着时间上的差异,即微管解聚在先,细胞伸长停止在后。以上结果均说明微管骨架在轮藻节间细胞生长中具有重要作用。  相似文献   
7.
Neurofilaments (NFs), the major neuronal intermediate filaments, form networks in vitro that mimic the axonal NF bundles. This report presents evidence for previously unknown regulation of the interactions between NFs by NF-associated ATPases. Two opposite effects on NF gelation in vitro occur at low and high ATP concentration. These findings support the hypothesis that NF bundles in situ are dynamic structures, and raise the possibility that ATP-hydrolyzing mechanoenzymes regulate their organization.  相似文献   
8.
We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal γ‐TuRC‐interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis‐Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin‐A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis‐side of the Golgi in an MT‐independent, GM130‐dependent manner. Short AKAP450‐dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi‐associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome–Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome‐associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.  相似文献   
9.
神经生长抑制因子研究进展   总被引:3,自引:0,他引:3  
神经生长抑制因子(neuronal growth inhibitory factor, GIF) 又名金属硫蛋白-Ⅲ (metallothionein-Ⅲ,MT-Ⅲ),特异分布于中枢神经系统(CNS),是神经系统中第一个被鉴定的具有神经元生长抑制功能的蛋白. GIF一级序列、高级结构、金属结合特性类似于其他MTs,基因结构也与其他MTs高度同源,但表达调控途径相异. GIF可能以其β结构域的CPCP区,与脑组织提取物中的相关因子结合,进而表现其生物学功能. 有研究认为GIF与阿尔茨海默等脑相关疾病均有密切关系.  相似文献   
10.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T0). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T1) produced the highest GUS activity when treated with 150 μM Cu2+ compared to the control (without Cu2+). However, Zn2+ and Fe2+ treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T1 seedlings of tomato when subjected to Cu2+ ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号