首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  国内免费   1篇
  2024年   1篇
  2022年   1篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   13篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
This study aimed to identify the docking and molecular mechanics-generalized born surface area (MM-GBSA) re-scoring parameters which can correlate the binding affinity and selectivity of the ligands towards oestrogen receptor β (ERβ). Three different series of ERβ ligands were used as dataset and the compounds were docked against ERβ (protein data bank (PDB) ID: 1QKM) using Glide and ArgusLab. Glide docking showed superior results when compared with ArgusLab. Docked poses were then rescored using Prime-MM-GBSA to calculate free energy binding. Correlations were made between observed activities of ERβ ligands with computationally predicted values from docking, binding energy parameters. ERβ ligands experimental binding affinity/selectivity did not correlate well with Glide and ArgusLab score. Whereas calculated Glide energy (coulomb-van der Waal interaction energy) correlated significantly with binding affinity of ERβ ligands (r2?=?0.66). MM-GBSA re-scoring showed correlation of r2?=?0.74 with selectivity of ERβ ligands. These results will aid the discovery of novel ERβ ligands with isoform selectivity.  相似文献   
2.
Abstract

Binding to DNA of two synthetic peptides, Val-Thr-Thr-Val-Val-NH-NH-Dns and Thr-Val- Thr-Lys-Val-Gly-Thr-Lsy-Val-Gly-Thr-Val-Val-NH-NH-Dns (where Dns is a residue of 5- dimethylaminonaphthalene-l-sulfonic acid), has been studied by circular dichroism, electron microscopy and fluorescence methods. It has been found that these two peptides can self- associate in aqueous solution as follows from the fact that concentration-dependent changes are observed in the UV absorbance and fluorescence spectra. The two peptides can bind to DNA both in self-associated and monomeric forms. The pentapeptide in the β-associated form binds more strongly to poly(dG) · poly(dC) than to poly[d(A-C)] · poly[d(G-T)] and poly(dA) · poly(dT) whereas the tridecapeptide exhibits an opposite order of preferences binding more strongly to poly[d(A-C)] · poly[d(G-T)] and poly(dA) · poly(dT) than to poly(dG) · poly(dC).

Binding is a cooperative process which is accompanied by the DNA compaction at peptide/DNA base pair ratios greater than l. At the initial stage of the compaction process, the coalescence of DNA segments covered by bound peptide molecules leads to the formation of DNA loops stabilized by the interaction between peptide molecules bound to different DNA segments. Further increase in the peptide/DNA ratio leads to the formation of rod-like structures each consisting of two or more double-stranded DNA segments. The final stage of the compaction process involves folding of fibrillar macromolecular complexes into a globular structure containing only one DNA molecule.  相似文献   
3.
Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) enzyme are useful for the treatment of various diseases including cancer. Comparative in silico studies were performed on different ligand-based (2D-QSAR, Kernel-based partial least square (KPLS) analysis, Pharmacophore Search Engine (PHASE) pharmacophore mapping), and structure-based (molecular docking, MM-GBSA analyses, Gaussian-based 3D-QSAR analyses on docked poses) modeling techniques to explore the structure–activity relationship of a diverse set of PARP-1 inhibitors. Two-dimensional (2D)-QSAR highlighted the importance of charge topological index (JGI7), fractional polar surface area (JursFPSA3), and connectivity index (CIC2) along with different molecular fragments. Favorable and unfavorable fingerprints were demonstrated in KPLS analysis, whereas important pharmacophore features (one acceptor, one donor, and two ring aromatic) along with favorable and unfavorable field effects were demonstrated in PHASE-based pharmacophore model. MM-GBSA analyses revealed significance of different polar, non-polar, and solvation energies. Docking-based alignment of ligands was used to perform Gaussian-based 3D-QSAR study that further demonstrated importance of different field effects. Overall, it was found that polar interactions (hydrogen bonding, bridged hydrogen bonding, and pi–cation) play major roles for higher activity. Steric groups increase the total contact surface area but it should have higher fractional polar surface area to adjust solvation energy. Structure-based pharmacophore mapping spotted the positive ionizable feature of ligands as the most important feature for discriminating highly active compounds from inactives. Molecular dynamics simulation, conducted on highly active ligands, described the dynamic behaviors of the protein complexes and supported the interpretations obtained from other modeling analyses. The current study may be useful for designing PARP-1 inhibitors.  相似文献   
4.
Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II.  相似文献   
5.
Efforts to combat Alzheimer’s disease are focused predominantly on inhibiting the activity of the enzyme(s) that have been identified to be responsible for the production of the amyloid-forming peptide. However, the inherent complexity associated with the network of pathways leading to the disease may involve additional targets for designing effective therapies. Recent experimental findings have identified abelson tyrosine kinase, a non-receptor kinase as a new target for Alzheimer’s. In this work, we employed energy optimized multiple pharmacophore modeling strategy from multiple c-Abl structures bound with ligands in the inactive ATP binding conformation (DFG-out). Virtual screening followed by docking of molecules from ChemBridge resulted in the identification of 10 best scoring molecules. MD simulations of the top three complexes revealed that Compound A, C are the most stable complexes with the most persistent protein–ligand interactions consistent with the calculated binding affinities for the top three compounds. Given the implied role of c-Abl not only in AD but in Parkinson’s disease, the identified compounds may serve as leads for effective neurotherapeutics.  相似文献   
6.
This computational study investigates 21 bioactive compounds from the Asteraceae family as potential inhibitors targeting the Spike protein (S protein) of SARS-CoV-2. Employing in silico methods and simulations, particularly CDOCKER and MM-GBSA, the study identifies two standout compounds, pterodontic acid and cichoric acid, demonstrating robust binding affinities (−46.1973 and −39.4265 kcal/mol) against the S protein. Comparative analysis with Favipiravir underscores their potential as promising inhibitors. Remarkably, these bioactives exhibit favorable ADMET properties, suggesting safety and efficacy. Molecular dynamics simulations validate their stability and interactions, signifying their potential as effective SARS-CoV-2 inhibitors.  相似文献   
7.
Fusion of one protein domain with another is a common event in both evolution and protein engineering experiments. When insertion is at an internal site (e.g., a surface loop or turn), as opposed to one of the termini, conformational strain can be introduced into both domains. Strain is manifested by an antagonistic folding-unfolding equilibrium between the two domains, which we previously showed can be parameterized by a coupling free-energy term (ΔGX). The extent of strain is predicted to depend primarily on the ratio of the N-to-C distance of the guest protein to the distance between ends of the surface loop in the host protein. Here, we test that hypothesis by inserting ubiquitin (Ub) into the bacterial ribonuclease barnase (Bn), using peptide linkers from zero to 10 amino acids each. ΔGX values are determined by measuring the extent to which Co2+ binding to an engineered site on the Ub domain destabilizes the Bn domain. All-atom, unforced Langevin dynamics simulations are employed to gain structural insight into the mechanism of mechanically induced unfolding. Experimental and computational results find that the two domains are structurally and energetically uncoupled when linkers are long and that ΔGX increases with decreasing linker length. When the linkers are fewer than two amino acids, strain is so great that one domain unfolds the other. However, the protein is able to refold as dimers and higher-order oligomers. The likely mechanism is a three-dimensional domain swap of the Bn domain, which relieves conformational strain. The simulations suggest that an effective route to mechanical unfolding begins with disruption of the hydrophobic core of Bn near the Ub insertion site.  相似文献   
8.
Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of chromodomain helicase DNA-binding protein 1 complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and the individual residues within the protein and peptides were computed with molecular mechanics-generalized Born surface area. The simulation results agree well with experimental data and identify several chromodomain helicase DNA-binding protein 1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes (generally interacting hydrophobically), and a second class of residues that bind only to particular H3 modifications (generally interacting electrostatically). Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis.  相似文献   
9.
Abstract

It is well known that the interactions of p53 with murine double minute 2 and murine double minute X, namely MDM2 and MDMX, have been significant targets of efficient anti-cancer drug design. In this study, molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations are combined to recognize binding selectivity of three ligands to MDM2 and MDMX. The binding free energies were estimated by using molecular mechanics generalized Born surface area (MM-GBSA) method and the obtained results display that the increase in the binding enthalpy of three ligands to MDM2 relative to MDMX mainly drives the binding selectivity of them toward MDM2 and MDMX. The information obtained from PC analysis shows that the associations of ligands exert important impacts on internal dynamics of MDM2 and MDMX. Meanwhile, the calculations of residue-based free energy decomposition not only identify the hot interaction spots of ligands with MDM2 and MDMX, but also show the residues (L54, M53), (Y67, Y66), (V93, V92), (H96, P95), (I99, I98) and (Y100, Y99) in (MDM2, MDMX) are responsible for most contributions to the binding selectivity of three ligands toward MDM2 and MDMX. It is believed that this work can provide useful information for design of highly selective and dual inhibitors targeting MDM2 and MDMX.

Communicated by Ramaswamy H. Sarma  相似文献   
10.
We have previously reported benzimidazole-based compounds to be potent inhibitors of FabI for Francisella tularensis (FtFabI), making them promising antimicrobial hits. Optically active enantiomers exhibit markedly differing affinities toward FtFabI. The IC50 of benzimidazole (?)-1 is ~100× lower than the (+)-enantiomer, with similar results for the 2 enantiomers. Determining the absolute configuration for these optical compounds and elucidating their binding modes is important for further design. Electronic circular dichroism (ECD) quantum calculations have become important in determining absolute configurations of optical compounds. We determined the absolute configuration of (?)/(+)-1 and (?)/(+)-2 by comparing experimental spectra and theoretical density functional theory (DFT) simulations of ECD spectra at the B3LYP/6-311+G(2d, p) level using Gaussian09. Comparison of experimental and calculated ECD spectra indicates that the S configuration corresponds to the (?)-rotation for both compounds 1 and 2, while the R configuration corresponds to the (+)-rotation. Further, molecular dynamics simulations and MM-GBSA binding energy calculations for these two pairs of enantiomers with FtFabI show much tighter binding MM-GBSA free energies for S-1 and S-2 than for their enantiomers, R-1 and R-2, consistent with the S configuration being the more active one, and with the ECD determination of the S configuration corresponding to (?) and the R configuration corresponding to (+). Thus, our computational studies allow us to assign (?) to (S)- and (+) to (R)- for compounds 1 and 2, and to further evaluate structural changes to improve efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号