首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2322篇
  免费   121篇
  国内免费   60篇
  2023年   30篇
  2022年   10篇
  2021年   56篇
  2020年   72篇
  2019年   125篇
  2018年   106篇
  2017年   56篇
  2016年   65篇
  2015年   84篇
  2014年   206篇
  2013年   167篇
  2012年   139篇
  2011年   234篇
  2010年   156篇
  2009年   142篇
  2008年   145篇
  2007年   155篇
  2006年   152篇
  2005年   111篇
  2004年   79篇
  2003年   72篇
  2002年   66篇
  2001年   33篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1994年   1篇
  1993年   1篇
  1985年   1篇
排序方式: 共有2503条查询结果,搜索用时 140 毫秒
1.
Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition.  相似文献   
2.
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.  相似文献   
3.
The current examination was intended to observe the defensive impacts of embelin against paraquat‐incited lung damage in relationship with its antioxidant and anti‐inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin‐1β (IL‐1β), tumor necrosis factor‐α, and IL‐6, histological examination, and nuclear factor kappa B/mitogen‐activated protein kinase (NF‐κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat‐administered and paraquat‐intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF‐κB p65, p‐NF‐κBp65, p38 MAPK, and p‐p38 MAPKs in paraquat‐intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF‐κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.  相似文献   
4.
5.
The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.  相似文献   
6.
p38MAPK是丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)家族的一个亚类,在高等脊椎动物免疫应答的信号转导过程中扮演着非常重要的角色。在日本七鳃鳗(Lampetra japonica)中发现,p38MAPK以两种异构体的形式存在。通过克隆它们的开放阅读框并进行同源序列比对和系统发育分析,鉴定它们分别为p38α(Lja-mapk14)和p38β(Lja-mapk11)。用混合菌刺激七鳃鳗,利用免疫印迹方法,检测Lja-mapk14在外周血类淋巴细胞、鳃组织和髓样小体中,分别在加强免疫36 h、24 h和24 h后,表达量达到峰值,分别为对照组的2.9、2.1和2.6倍;而Lja-mapk11在以上组织中,都在加强免疫36 h后达到表达量峰值,分别为对照组的2.2、2.5和6.3倍。实时荧光定量PCR检测发现,Lja-mapk14的mRNA表达水平在混合菌加强免疫36 h后,分别在类淋巴细胞、鳃组织和髓样小体中,上调2.3、1.5和3.4倍;而Lja-mapk11的则分别在类淋巴细胞、鳃组织和心肌中,上调1.3、2.6和1.6倍。以上结果在mRNA和蛋白质水平证明,Lja-mapk14和Lja-mapk11均参与七鳃鳗的免疫应答反应。采用B细胞和T细胞丝裂原LPS和PHA分别对七鳃鳗进行刺激,免疫印迹结果显示,Lja-mapk14和Lja-mapk11蛋白质表达量经LPS加强免疫36 h后,在类淋巴细胞、鳃组织和髓样小体中,上调表达1.3 ~ 4.1倍;而经PHA加强免疫36 h后,Lja-mapk14和Lja-mapk11在上述组织中表达量均不存在显著变化。以上结果说明,Lja-mapk14和Lja-mapk11可能参与了B细胞丝裂原LPS介导的VLRB类淋巴细胞亚群的免疫应答反应。  相似文献   
7.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant responses to both biotic and abiotic stress. A screen of a Nicotiana benthamiana cDNA virus-induced gene silencing (VIGS) library for altered plant responses to inoculation with Phytophthora infestans previously identified an NbMKK gene, encoding a clade D MAPKK that we renamed as NbMKK5, which is involved in immunity to P. infestans. To study the role of the potato orthologous gene, referred to as StMKK5, in the response to P. infestans, we transiently overexpressed StMKK5 in N. benthamiana and observed that cell death occurred at 2 days postinfiltration. Silencing of the highly conserved eukaryotic protein SGT1 delayed the StMKK5-induced cell death, whereas silencing of the MAPK-encoding gene NbSIPK completely abolished the cell death response. Further investigations showed that StMKK5 interacts with, and directly phosphorylates, StSIPK. Furthermore, both StMKK5 and StSIPK trigger salicylic acid (SA)- and ethylene (Eth)-related gene expression, and co-expression of the salicylate hydroxylase NahG with the negative regulator of Eth signalling CTR1 hampers StSIPK-triggered cell death. This observation indicates that the cell death triggered by StMKK5-StSIPK is dependent on the combination of SA- and Eth-signalling. By introducing point mutations, we showed that the kinase activity of both StMKK5 and StSIPK is required for triggering cell death. Genetic analysis showed that StMKK5 depends on StSIPK to trigger plant resistance. Thus, our results define a potato StMKK5-SIPK module that positively regulates immunity to P. infestans via activation of both the SA and Eth signalling pathways.  相似文献   
8.
The vacuoles of the yeast Saccharomyces cerevisiae are closely related to mammalian lysosomes and play a role in macromolecular degradation due to the hydrolytic enzymes present inside. The vacuoles also regulate osmotic pressure and control cellular homeostasis. In previous results, vacuoles were shown to activate the immune response of macrophages by promoting the production of immune-mediated transporters nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines. In this study, the effects of vacuoles on the phagocytosis activity of RAW264.7 cells and their potential as immune enhancers were evaluated, and receptors capable of recognizing vacuoles were examined. An investigation using the phagocytes assay showed that phagocytosis activity increased by the vacuole. Besides, after treatment with TLR2/4 inhibitor, the expression of pro-inflammatory cytokines by vacuoles was significantly reduced and the inducible nitric oxide synthase (iNOS) protein was also significantly reduced. However, treatment with a TLR2 inhibitor did not reduce the production of interleukin-6 (IL)-6, a pro-inflammatory cytokine. As a result of confirming the activation of TLR2/4 using Western blot and immunofluorescence (IF), the TLR2/4 protein expression and fluorescence intensity increased depending on the concentration of vacuoles. Yeast vacuoles significantly upregulate protein expression of p-p65/p-p38 MAPKs. In summary, the vacuoles isolated from S. cerevisiae in macrophages have increased phagocytic ability at a concentration of 20 (µg/ml) and can function as immune-enhancing agent suggesting that TLR2/4 mediated the p38 MAPK/nuclear factor kappa B signaling pathway.  相似文献   
9.
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) employs virulence effectors to disturb host immunity and causes devastating stripe rust disease. However, our understanding of how Pst effectors regulate host defense responses remains limited. In this study, we determined that the Pst effector Hasp98, which is highly expressed in Pst haustoria, inhibits plant immune responses triggered by flg22 or nonpathogenic bacteria. Overexpression of Hasp98 in wheat (Triticum aestivum) suppressed avirulent Pst-triggered immunity, leading to decreased H2O2 accumulation and promoting P. striiformis infection, whereas stable silencing of Hasp98 impaired P. striiformis pathogenicity. Hasp98 interacts with the wheat mitogen-activated protein kinase TaMAPK4, a positive regulator of plant resistance to stripe rust. The conserved TEY motif of TaMAPK4 is important for its kinase activity, which is required for the resistance function. We demonstrate that Hasp98 inhibits the kinase activity of TaMAPK4 and that the stable silencing of TaMAPK4 compromises wheat resistance against P. striiformis. These results suggest that Hasp98 acts as a virulence effector to interfere with the MAPK signaling pathway in wheat, thereby promoting P. striiformis infection.  相似文献   
10.
The recombinant human p38 MAP kinase has been expressed and purified from both Escherichia coli and SF9 cells, and has been crystallized in two forms by the hanging drop vapor diffusion method using PEG as precipitant. Both crystal forms belong to space group P2(1)2(1)2(1). The cell parameters for crystal form 1 are a = 65.2 A, b = 74.6 A and c = 78.1 A. Those for crystal form 2 are a = 58.3 A, b = 68.3 A and c = 87.9 A. Diffraction data to 2.0 A resolution have been collected on both forms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号