首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   9篇
  国内免费   1篇
  2024年   1篇
  2021年   8篇
  2020年   6篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   20篇
  2008年   8篇
  2007年   16篇
  2006年   15篇
  2005年   14篇
  2004年   17篇
  2003年   13篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   2篇
  1997年   10篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有222条查询结果,搜索用时 218 毫秒
1.
Turning, pectoral fin and caudal fin rates and time spent on the nest of male rock bass Ambloplites rupestris , engaged in parental care, were not affected after the attachment of external radio transmitters. Reproductive success was similar between treatment and control fish. Micro external radio transmitters can be used on small fishes for studying parental care duration and post-care movement without altering their behaviour.  相似文献   
2.
Todd A. Crowl 《Hydrobiologia》1989,183(2):133-140
Laboratory experiments were performed in clear and turbid water to determine the effects of prey size, orientation, and movement on the reactive distance of largemouth bass (Micropterus salmoides) when feeding on crayfish (Procambarus acutus). In clear water, the reactive distance increased linearly with an increase in prey size, and prey movement resulted in a significant increase in the reactive distance. Prey orientation (head-on versus perpendicular) did not change the reactive distances. In moderately turbid water, the reactive distance did not increase with increased prey size, and prey movement did not result in any changes in the reactive distance. The absence of any effects of prey orientation in clear water or prey movement in turbid water is inconsistent with results from studies using different species (primarily planktivorous fish). I propose that largemouth bass change their foraging tactics as prey visibility changes. When prey are highly visible (low turbidity), predators attack (react) only after prey recognition, which is based on multiple cues such as prey size (length, width) and movement. When prey are less visible (high turbidity), predators attack immediately upon initial prey sighting, which does not depend on prey size or movement.  相似文献   
3.
The effect of ration on the growth of pairs of juvenile sea bass Dicentrarchus labrax fed squid mantle was recorded at four temperatures: 6, 10, 14 and 18) C, covering the range typical of Welsh coastal waters. Initial weight of the fish ranged from 2.8 to 15.9 g. A predictive model for the maximum meal size (Mmax) at temperatures between 10 and 18) C, accounted for 95% of the variance in lnMmax. Even when offered excess food, bass at 6) C had a low rate of food consumption [0.19% body weight (BW) day?1] and lost weight (G=?0.04% day?1). Predictive regression models for specific growth rate (G) accounted for 86% of the variance at reduced rations and 70% at maximum meals. The relationship between G (calculated for total biomass per tank) and ration was a decelerating curve. G at maximum meals increased with temperature, at lower rations G decreased with temperature. For a pair of bass with a combined weight of 15 g, predicted maintenance ration ranged between 0.7 and 2.3% BW day?1 and increased with temperature. Maximum meal size was more sensitive to temperature than maintenance ration. At 18) C optimum ration was 7.4% BW day?1. At lower temperatures, the optimum ration was the maximum meal. The maximum gross growth efficiency was 17.4% at 18) C. Mean absorption efficiency was 94.8%. Ration level had no significant effect on absorption efficiency, which was lowest at 6) C. Condition indices (Fulton condition factor, wet and dry liver—somatic indices and body depth index) increased with meal size at all temperatures except 6) C. An increase in temperature between 10 and 18) C generally resulted in a decrease in condition indices at a given ration. When comparisons were made at a given standard length, gut and carcass weight increased with ration. Visceral fat and gut weight decreased with increased temperature.  相似文献   
4.
Laboratory feeding trials were conducted to determine how light intensity affects foraging success by the visual piscivore, the largemouth bass ( Micropterus salmoides ). Foraging success was greater than 95% at light levels ranging from low intensity daylight (2.43 × 102 lx) to moonlight (3 × 10−3 lx), but declined significantly to 62% at starlight (2 × 10−4 lx) and near 0% in total darkness. Over a range of low to high water clarities (0.5, 2.0, and 4.0 m Secchi depth), estimated depth limits for feeding during the day ranged between 5.5 to 44 m and from 1.6 to 13 m at night during a full moon. At starlight, light intensity rapidly attenuated to a level below the feeding threshold within 0.5 m of the surface at all water clarities. The depth of the water column available for feeding in low clarity water (0.5 m Secchi) was 67 and 75% less than at moderate (2.0 m Secchi) and high (4.0 m Secchi) water clarities. The findings illustrate how differences in the light environment can have important ramifications for predator-prey interactions.  相似文献   
5.
Summary kinetics of intestinal transport of l-alanine and l-valine (substrates of the A-system and the L-system, respectively, in mammals) across the brush-border membrane in sea bass, Dicentrarchus labrax, were studied on intact mucosa using a short-term uptake technique. When fish were starved for 4–8 weeks, total influx (mucosa-to-cell) of valine fell owing to disappearance or modification of the diffusion component. The maximum influx rate of saturable component increased but its affinity (reflected by the Michaelis constant) decreased. Alanine transport by Na+-dependent and diffusion pathways was unchanged after starvation Fasting also induced an almost 20% decrease in the length of intestinal microvilli.Abbreviations K d diffusional constant - K m Michaelis constant - V max maximum influx rate  相似文献   
6.
A microtitre plate indirect enzyme‐linked immunoassay (ELISA) was developed for measuring plasma cortisol levels in rainbow trout Oncorhynchus mykiss, gilthead sea bream Sparus auratus sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis. Covalink microplates pretreated with disuccinimidyl suberate were coated with bovine serum albumin (BSA) conjugated to cortisol‐3‐carboxymethyl oxime. After blocking with BSA, competition was started by addition of plasma samples and anti‐cortisol antibody raised in rabbit. Goat anti‐rabbit IgG conjugated‐peroxidase was added as second antibody and then incubated with orthophenylenediamine as substrate. Reaction was stopped with 0·1 M HCl and absorbance was read at 450 nm in an automatic plate reader. The standard curve was linear from the lower limit of sensitivity of the assay (c. 0·3 ng ml?1) to c. 3000 ng ml?1. Dose‐response inhibition curves using serially diluted plasma samples of four species consistently showed parallelism with the standard curve using cortisol. The ELISA satisfied the strictest criteria of specificity (cross‐reactivity of anti‐cortisol antibody with testosterone, progesterone and 17ß‐oestradiol was negligible, cross‐reactivity with cortisone, corticosterone and 11‐deoxycortisol, was 1·5, 1 and 0·1%, respectively), reproducibility (interassay CV <6%), precision (intra‐assay CV <4%), and accuracy (average recovery >98%). Plasma cortisol concentration in rested fishes was in the range of 5–30 ng ml?1. To physiologically validate the technique, changes in plasma cortisol concentrations were also measured in plasma of rainbow trout and gilthead sea bream following an acute 15 min chasing or 3 min air‐exposure stress, respectively. In both species plasma concentrations of cortisol, glucose and lactate rose significantly with respect to controls, showing concentrations similar to those reported previously for these species under similar stress conditions. Furthermore, gilthead sea bream chronically stressed by maintaining for 14 days under increased stocking density conditions also showed increased concentrations of plasma cortisol and glucose. These results validate the indirect ELISA technique developed for use in the evaluation of plasma cortisol concentration of at least four fish species.  相似文献   
7.
Natural mating and mass spawning in the European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) complicate genetic studies and the implementation of selective breeding schemes. We utilized a two‐step experimental design for detecting QTL in mass‐spawning species: 2122 offspring from natural mating between 57 parents (22 males, 34 females and one missing) phenotyped for body weight, eight morphometric traits and cortisol levels, had been previously assigned to parents based on genotypes of 31 DNA microsatellite markers. Five large full‐sib families (five sires and two dams) were selected from the offspring (570 animals), which were genotyped with 67 additional markers. A new genetic map was compiled, specific to our population, but based on the previously published map. QTL mapping was performed with two methods: half‐sib regression analysis (paternal and maternal) and variance component analysis accounting for all family relationships. Two significant QTL were found for body weight on linkage group 4 and 6, six significant QTL for morphometric traits on linkage groups 1B, 4, 6, 7, 15 and 23 and three suggestive QTL for stress response on linkage groups 3, 14 and 23. The QTL explained between 8% and 38% of phenotypic variance. The results are the first step towards identifying genes involved in economically important traits like body weight and stress response in European sea bass.  相似文献   
8.
文章研究了华中地区池塘养殖大口黑鲈(Micropterus salmoides)卵巢的发育规律, 分析了水温与光照条件变化对卵巢发育的影响, 探究了大口黑鲈反季节繁殖的方法, 旨在充分利用本地区的气候条件, 化劣势为优势, 从根本上解决本地大口黑鲈产业所面临的问题。实验采用形态学、组织学等方法比较分析了大口黑鲈卵巢发育特征, 采用人工控温和人工促熟的方法探究了温度和性激素对大口黑鲈性腺启动发育的影响。研究发现, 华中地区大口黑鲈雌鱼性腺指数(GSI)周年变化在0.63%—7.95%, 10月中旬至12月初水温由20.6℃降至11.0℃期间, 卵巢开始发育至Ⅲ期, 并以Ⅲ期越冬, 至4月中旬繁殖产卵, 5月底结束, 繁殖前约80%的雌鱼绝对繁殖力在4.5万—6.5万粒, 但受水温升高的影响, 卵巢中15%成熟卵母细胞未能产出而逐步退化, 产卵结束时仍有一半以上卵未产出(GSI为4.6%); 雌鱼GSI与肠系膜脂肪系数(MFI)、肝体比(HSI)在10月份至次年4月份呈显著负相关(P<0.05), 表明在此期间, 机体储存的营养物质部分转移至性腺, 优先保证性腺发育。在大口黑鲈反季节繁殖实验中, 采用井水[水温(20±1)℃]降温和控温处理的方法能够促进大口黑鲈性腺的启动发育, 经过3个月处理, 控温组雌鱼卵巢发育至Ⅳ期末, GSI达到4.06%, 而对照组雌鱼卵巢处于Ⅲ期, GSI为2.52%, 两组差异显著(P<0.05), 两组雄鱼精巢均发育至Ⅳ期末, 控温组GSI达0.89%, 对照组为0.73%, 这表明可以通过温度处理来调控大口黑鲈性腺的发育。最后针对反季节繁殖中亲本的培育方法和处理时间等进行了总结, 以期为后续培育反季节大口黑鲈提供依据。  相似文献   
9.
Dopamine is synthesized from l-dopa and subsequently processed into norepinephrine and epinephrine. Any excess neurotransmitter can be taken up again by the neurons to be broken down enzymatically into DOPAC. The effect of dopamine on mammalian food intake is controversial. Mice unable to synthesize central dopamine die of starvation. However, studies have also shown that central injection of dopamine inhibits food intake. The effect of dopaminergic system in the fish feeding behavior has been scarcely explored. We report that the inclusion of l-dopa in the diets results in the activation of sea bass central dopaminergic system but also in the significant increase of the hypothalamic serotonin levels. Dietary l-dopa induces a decrease of food intake and feed conversion efficiency that drives a decline of all growth parameters tested. No behavioral effects were observed after l-dopa treatment. l-dopa treatment stimulated central expression of NPY and CRF. It suggests that CRF might mediate l-dopa effects on food intake but also that CRF neurons lie downstream of NPY neurons in the hierarchical forebrain system, thus controlling energy balance. Unexpectedly, dietary administration of haloperidol, a D2-receptor antagonist, cannot block dopamine effects but also induces a decline of the food intake. This decrease seems to be a side effect of haloperidol treatment since fish exhibited a decreased locomotor activity. We conclude that oral l-dopa inhibits sea bass food intake and growth. Mechanism could also involve an increase of hypothalamic serotoninergic tone.  相似文献   
10.
Sunshine bass (Morone chrysopsxMorone saxatilis) were subjected to a 15-min low-water confinement stressor at temperatures ranging from 5 to 30 degrees C. Physiological responses were evaluated by measuring hematocrit, and plasma chloride, glucose and cortisol. Fish acclimated to 30 degrees C had initial glucose concentrations of 3.13 mM (564 mg/L) which were significantly lower than in fish acclimated to 5 and 10 degrees C (4.32 and 4.82 mM or 779 and 868 mg/l, respectively). Fish survived the conditions imposed at every temperature except 30 degrees C, where 15 out of 42 fish died during the stress and recovery protocol. The general pattern was an initial increase in hematocrit, followed by a delayed decrease in hematocrit and chloride, and an increase in plasma glucose and cortisol. In general, fish stressed at temperatures below 20 degrees C had lower and more delayed changes in plasma glucose and cortisol than fish tested at 20, 25 and 30 degrees C. Initial cortisol concentrations were 65 ng/ml and increased to above 200 ng/ml in fish held at 20 degrees C and above. At the higher temperatures, glucose concentrations were twice the initial concentration after stress and cortisol changes were four to five times the initial concentration after the stress. Quantitative responses for glucose and cortisol were moderate and recovery rapid in fish stressed at 10 and 15 degrees C; therefore, this range of water temperature is recommended when handling sunshine bass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号