首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   10篇
  国内免费   3篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1983年   1篇
  1971年   1篇
排序方式: 共有80条查询结果,搜索用时 93 毫秒
1.
Parts of the mitochondrial genes coding for 12SrRNA and 16SrRNA (together about 960 bp) were sequenced for all Mediterranean species of 'Mountain lizards' of the genera Archaeolacerta ( sensu lato ) and Iberolacerta . All subspecies of the Iberian species Iberolacerta cyreni and I. monticola were included in this study. In addition, samples of Apathya cappadocica and Darevskia rudis were analysed to elucidate the relationships of the European 'Mountain lizards' to their possible relatives in the Near East. Maximum parsimony and neighbour joining analyses lead to the following major conclusions: (i) the monophyly of the genus Iberolacerta is very well supported; (ii) Archaeolacerta bedriagae (the type species of the genus) is most basal with respect to the ingroup taxa. If we accept Iberolacerta as a genus, Archaeolacerta becames paraphyletic. Therefore, we propose to restrict Archaeolacerta to the type species and to treat A. mosorensis and A. oxycephala provisionally as members of the collective genus Lacerta ; (iii) within the genus Iberolacerta three groups were found: a Pyrenean group, an Iberian group and I. horvathi . The relationships among these groups remain unresolved; and (iv) the Peña de Francia lizards, described originally as a subspecies of I. cyreni , are in fact more closely related to I. monticola .  相似文献   
2.
Lacerta pamphylica and Lacerta trilineata are two currently recognized green lizard species with a historically problematic taxonomy. In cases of tangled phylogenies, next-generation sequencing and double-digest restriction-site-associated DNA protocols can provide a wealth of genomic data and resolve difficult taxonomic issues. Here, we generated genome-wide SNPs and mitochondrial sequences, and applied molecular species delimitation approaches to provide a stable taxonomy for the Aegean green lizards. Mitochondrial gene trees, genetic cluster delimitation and population structure analyses converged into recognizing the populations of (a) L. pamphylica, (b) east Aegean islands, Anatolia and Thrace (diplochondrodes lineage), (c) central Aegean islands (citrovittata), and (d) remaining Balkan populations and islands (trilineata), as separate clusters. Phylogenomic analyses revealed a split into two major clades, east and west of the Aegean Barrier, unambiguously showing a sister–clade relationship between pamphylica and diplochondrodes, rendering L. trilineata paraphyletic. Species delimitation models were tested in a Bayesian framework using the genomic SNPs: lumping all populations into a single ‘species’ had the lowest likelihood but the current taxonomy was also outperformed by all other models. All lines of evidence support the Pamphylian green lizard as a valid species; thus, east Aegean L. trilineata should also be considered a distinct species under the name Lacerta diplochondrodes. Finally, evidence from the mitochondrial and nuclear genomes is overwhelmingly in favour of recognizing the morphologically distinct Cycladian green lizards as a distinct species. We propose their elevation to full species under the name Lacerta citrovittata. All remaining insular and continental populations of the Balkan Peninsula represent the species L. trilineata.  相似文献   
3.
It has been proposed that Lacerta viridis magnifica Sobolevssky, 1930 represents an extinct species or subspecies of green lizard endemic to the southern Crimea. Using NGS protocols optimized for heavily degraded DNA, we sequenced the complete mitogenome of one of the originally formalin-preserved specimens collected in the late 19th century. A comparison with sequence data of other green lizards revealed that L. v. magnifica is a junior synonym of the northern subspecies of the western green lizard (L. b. bilineata Daudin, 1802), which occurs at least 1,500 km away, beyond the distribution ranges of other green lizards. In medieval times, a Genoese colony existed in the Crimean region where the extinct green lizards occurred. Until the early 20th century, close ties to Italy persisted, and locals of Genoese descent sent their children for education to Italy, where L. b. bilineata occurs. This suggests that the extinct Crimean green lizards have been introduced accidentally or intentionally from Italy. Our study exemplifies the value of historical formalin-preserved museum specimens for clarifying the status of questionable rare or extinct taxa.  相似文献   
4.
The Persian Lizard, Iranolacerta brandtii, was until recently considered to be restricted to north-western Iran (Azerbaijan and Esfahan provinces). However, two recent studies have revealed the existence of populations in Eastern Anatolia, extending the range of this species for about 230?km westwards. The fragmented distribution of this species has been considered to be a consequence of the climatic oscillations during the Pleistocene and Holocene, which created events of alternating contact and isolation of populations in distinct glacial refugia. According to our obtained genealogy derived from three mitochondrial fragments (12S rRNA, 16S rRNA and cytb), the Turkish specimens cluster together but form an independent clade, sister to the individuals from Tabriz in Iran. The separation of these two clades is concurrent with the cladogenesis between the Esfahan and Ardabil clades, estimated to have taken place during the late Holocene.  相似文献   
5.
Eremiadinae, one of three subfamilies of Lacertidae, are distributed throughout Asia and Africa. Previous phylogenetic studies suggested that one of the main groups of Eremiadinae (the Ethiopian clade) consist of two clades with predominately East‐African and South‐African distribution. Yet, especially the latter one, which includes the genera Pedioplanis, Meroles, Ichnotropis, Tropidosaura and Australolacerta, was not well supported in the molecular phylogenetic analysis. In this study, we analysed the phylogenetic relationships among the genera of the ‘South African clade’ to assess whether this group actually forms a highly supported clade and to address questions concerning the monophyly of the genera. We sequenced sections of the widely used mitochondrial genes coding for 16S rRNA, 12S rRNA and cytochrome b (altogether 2045 bp) as well as the nuclear genes c‐mos, RAG‐1, PRLR, KIF24, EXPH5 and RAG‐2 (altogether 4473 bp). The combined data set increased the support values for several nodes considerably. Yet, the relationships among five major lineages within the ‘South African clade’ are not clearly resolved even with this large data set. We interpret this as a ‘hard polytomy’ due to fast radiation within the South African lacertids. The combined tree based on nine marker genes provides strong support for the ‘South African Clade’ and its sister group relationship with the ‘East African Clade’. Our results confirm the genus Tropidosaura as a monophylum, while Ichnotropis is paraphyletic in our trees: Ichnotropis squamulosa appears more closely related to Meroles than to Ichnotropis capensis. Furthermore, the monophyly of Meroles is questionable as well. Based on our results, I. squamulosa should be transferred from Ichnotropis into the genus Meroles. Also, the two species of Australolacerta (A. australis and A. rupicola) are very distantly related and the genus is perhaps paraphyletic, too. Finally we propose a phylogeographical scenario in the context of palaeoclimatic data and compare it with a previously postulated hypothesis.  相似文献   
6.
History and function of scale microornamentation in lacertid lizards   总被引:3,自引:0,他引:3  
Differences in surface structure (ober-hautchen) of body scales of lacertid lizards involve cell size, shape and surface profile, presence or absence of fine pitting, form of cell margins, and the occurrence of longitudinal ridges and pustular projections. Phylogenetic information indicates that the primitive pattern involved narrow strap-shaped cells, with low posteriorly overlapping edges and relatively smooth surfaces. Deviations from this condition produce a more sculptured surface and have developed many times, although subsequent overt reversals are uncommon. Like variations in scale shape, different patterns of dorsal body microornamentation appear to confer different and conflicting performance advantages. The primitive pattern may reduce friction during locomotion and also enhances dirt shedding, especially in ground-dwelling forms from moist habitats. However, this smooth microornamentation generates shine that may compromise cryptic coloration, especially when scales are large. Many derived features show correlation with such large scales and appear to suppress shine. They occur most frequently in forms from dry habitats or forms that climb in vegetation away from the ground, situations where dirt adhesion is less of a problem. Microornamentation differences involving other parts of the body and other squamate groups tend to corroborate this functional interpretation. Microornamentation features can develop on lineages in different orders and appear to act additively in reducing shine. In some cases different combinations may be optimal solutions in particular environments, but lineage effects, such as limited reversibility and different developmental proclivities, may also be important in their genesis. The fine pits often found on cell surfaces are unconnected with shine reduction, as they are smaller than the wavelengths of most visible light.  相似文献   
7.
Wild-caught specimens of the lacertid lizard Gallotia galloti eisentrauti from the Canary Island of Tenerife were checked for ectoparasites. The parasitic gamasid mite Ophionyssus galloticolus Fain and Bannert (2000) was very abundant on these lizards. Additionally, parasitism by larvae of two species of Trombiculidae (Prostigmata: Parasitengona) was observed. O. galloticolus was reared in the laboratory on its natural host in order to investigate its life cycle, reproductive biology, and development. The life history of O. galloticolus is documented in detail and compared to literature data of other Ophionyssus species. O. galloticolus was found to be similar to other species of the same genus with respect to the duration of development, the precopulatory association of protonymphs, and the arrhenotokous development of eggs. However, it seems to be more tolerant towards low relative humidity and longer starvation periods than other Ophionyssus species. Evolutionary transformations of the life-history pattern of this genus and other parasitic mites in comparison to its predatory precursors involve a reduction or partial suppression of ontogenetic instars in order to decrease mortality during host-seeking phases, and a compensating increase in growth capacity of the remaining feeding instars facilitated by replacement of sclerites through elastic cuticle or by growth of new cuticle unrelated to a moult (neosomy).  相似文献   
8.
9.
华北丽斑麻蜥食物同化和疾跑速的热依赖性   总被引:8,自引:4,他引:4  
罗来高  屈彦福  计翔 《动物学报》2006,52(2):256-262
作者研究山西阳泉丽斑麻蜥(Eremias argus)成体的选择体温、热耐受性及食物同化和疾跑速的热依赖性。选择体温、临界低温和临界高温无显著的两性差异,分别为36·0℃、1·0℃和44·9℃。在实验温度范围内,体温显著影响食物通过时间、日摄食量、日粪尿排量、表观消化系数和同化效率。食物通过时间在26 -34℃范围内随体温升高而缩短,在更高的体温下则延长。蜥蜴在30、32、34和36℃体温下明显摄入较多的食物、排出明显较多的粪尿。34℃和36℃下的表观消化系数和同化效率大于其它更低或更高温度下的对应数值,但这两个变量未因体温变化而呈现清晰的规律性变化。疾跑速在18 -36℃范围内随体温升高而加快,在38℃体温下则减缓。36℃或附近体温最适合疾跑速。疾跑速最适体温接近蜥蜴的选择体温,表明蜥蜴疾跑速的最适温度可能与其选择体温密切相关[动物学报52 (2) : 256 -262 , 2006]。  相似文献   
10.
An experimental reduction of offspring number has been reported to result in enlargement of offspring size in lizards. We applied the “follicle excision” technique to a lacertid lizard (Takydromus septentrionalis) to examine whether this effect is generalisable to lizards. Of the 82 females that produced 3 successive clutches in the laboratory, 23 females underwent follicle excision after they oviposited the first clutch. Follicle excision reduced clutch size, but did not alter egg size. This result indicates that egg size is not altered during vitellogenesis in T. septentrionalis. Females undergoing follicle excision produced a third clutch (a second post-surgical clutch) as normally as did control females. Females switched from producing more but smaller eggs early in the breeding season to fewer but larger eggs later in the season. Our results indicate that female T. septentrionalis maximize reproductive success by diverting an optimal, rather than a higher, fraction of the available energy to individual offspring. This optimized allocation of the available energy to offspring production explains why follicle excision does not result in enlargement of egg size in this species. Our study provides evidence that an experimental reduction of offspring number does not always result in enlargement of offspring size in lizards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号