首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2018年   5篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2005年   2篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有34条查询结果,搜索用时 53 毫秒
1.
E. coli cells were reacted with TNBS in bicarbonate-NaCl buffer, pH 8.5 (buffer A) and in phosphate-NaCl buffer, pH 7.0 (buffer B). In buffer A, DNP-GPE is the major product when FDNB is used. DNP-PE and DNP-LPE are formed in lesser amounts. Phospholipase A activity is high in buffer A. When TNBS is used, the labeling of the lipid components is less than with FDNB and more TNP-PE is formed relative to TNP-GPE. This data suggests that the phospholipases which are located primarily on the outer L-membrane of the cell wall act to a lesser extent on TNP-PE than on DNP-PE. E. coli cells were prelabeled with TNBS and FDNB in buffer A, washed and incubated in buffer A. The endogenous labeled DNP-PE gradually decreased with time with a concomitant increase in DNP-LPE and DNP-GPE due to phospholipase A activity. In contrast, the endogenous labeled TNP-PE also decreased with time as did the endogenous labeled TNP-LPE but a new orange lipid was produced. This lipid is believed to be a derivative of TNP-PE in which one of the nitro groups has been reduced to an amino group by nitroreductase. E. coli cells were prelabeled with TNBS and FDNB in buffer A, washed and incubated in buffer B. Under these conditions with both TNBS and FDNB there is an increase in TNP-PE and DNP-PE with a concomitant decrease in TNP-LPE, TNP-GPE, DNP-LPE and DNP-GPE. These results show that at neutral pH acylation occurs to regenerate TNP-PE and DNP-PE. E. coli cells were incubated with exogenous DNP-GPE or TNP-GPE in buffer A. The DNP-GPE and TNP-GPE were rapidly hydrolyzed by a phosphodiesterase to DNP-ethanolamine and TNP-ethanolamine. An orange derivative was formed which was provisionally identified as a derivative of DNP-ethanolamine or TNP-ethanolamine in which a nitro group has been reduced to an amino group by nitroreductase. The phospholipases and acylating enzymes present in the cell wall of E. coli are active on the dinitrophenyl and trinitrophenyl derivatives of PE and LPE and may act in concert to model and repair the plasma membrane.  相似文献   
2.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   
3.
Chen Q  Kazachkov M  Zheng Z  Zou J 《FEBS letters》2007,581(28):5511-5516
Cellular phospholipids undergo deacylation and reacylation through a process known as Lands cycle. In this report, we provide evidence demonstrating that yeast YOR175c, herein designated as LCA1, encodes a key component of the Lands cycle, the acyl-CoA: lysophosphatidylcholine acyltransferase (LPCAT). Deletion of LCA1 resulted in a drastic reduction in LPCAT activity, while over expression led to a several fold increase in enzyme activity. We further show that disruption of LCA1 caused an enhanced production of glycerophosphorylcholine, a product of phosphatidylcholine (PC) deacylation and that the lysophosphatidic acid acyltransferase SLC1 was not involved in this process. Identification of LCA1 provides an essential molecular tool for further study of Lands cycle in PC turnover.  相似文献   
4.
The elucidation of factors inducing the growth of Plasmodium falciparum can provide critical information about the developmental mechanisms of this parasite and open the way to search for novel targets for malaria chemotherapy. The ability of components of a growth-promoting factor derived from bovine serum and various related substances to sustain growth of P. falciparum was characterized. A simple total lipid fraction (GFS-C) containing non-esterified fatty acids (NEFAs) as essential factors was noted to promote the parasite's growth. Various proteins from a variety of animals were tested, indicating the importance not only of GFS-C, but also of specific proteins, such as bovine and human albumin, in the parasite growth. Several combinations of the NEFAs tested sustained low parasite growth. Among various phospholipids and lysophospholipids tested, lysophosphatidylcholine containing C-18 unsaturated fatty acids was found to sustain the complete development of the parasite in the presence of bovine albumin. Several other lysophospholipids can partially support growth of P. falciparum.  相似文献   
5.
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.  相似文献   
6.
Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8?weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.  相似文献   
7.
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1.  相似文献   
8.
We present the first direct evidence for a highly active, Ca++-dependent phospholipase A2 in the microsomal fraction of rat lung homogenate. Several previously reported studies from other laboratories strongly implicate this enzyme as a key metabolic step in the biosynthesis of dipalmitoyl lecithin, the primary component of pulmonary surfactant. In the present study, stoichiometric amounts of [3H]lysophosphatidylethanolamine and [14C]fatty acid were released during incubation of 1-[9, 10-3H]palmitoyl-2-sn-[1′-14C]linoleoyl phosphatidylethanolamine with the lung microsomal fraction. Marker enzyme measurements showed that the microsomal activity cannot be due to contamination with mitochondria, which also show phospholipase A2 in both lung and liver. In contrast, liver microsomes show predominantly a phospholipase A1 activity.  相似文献   
9.
Platelet-activating factor (PAF) is a phospholipid mediator, released by basophils, macrophages and neutrophils under immunological and non immunological stimuli. It aggregates platelets and liberates their vasoactive contents. We studied the "spontaneous" release of PAF from hog blood leukocytes : optimal conditions were 22 degrees C, pH 9.5 in BSA and Ca2+-containing Tyrode's. This release was inhibited by the Ca2+-chelating agent, EDTA, and by the phospholipase A2 inhibitor, bromophenacyl bromide. Disruption of the cells did not yield PAF, indicating that it is not a "preformed" mediator. A preparative procedure for the extraction and purification of bulk quantities of PAF was developed. Purification was performed by silicic acid columns followed by high pressure liquid chromatography. The active fraction was eluted between sphingomyelin and lysophosphatidylcholine. The PAF purest fractions were still contaminated with these phospholipids as shown by thin layer chromatography and chemical ionization mass spectrometry. PAF activity was not affected by treatment with diazomethane, acetylation or hydrogenation. Our results combined with those obtained from our previous studies of the PAF structure using specific phospholipases indicate that PAF is a glycero-phospholipid devoid of ester function at position 1. This allowed us to establish precise criteria to distinguish PAF from other aggregating agents.  相似文献   
10.
The conversion of 2-lysophospholipids into corresponding phospholipids via acyl-CoA acyltransferase was demonstrated in homogenates of rat pancreatic acini. Arachidonic acid was greatly preferred over stearic acid as the acyl donor. Lysophophosphatidylinositol and lysophosphatidylcholine acyltransferases were distributed in subcellular fractions of acinar homogenates with specific activity highest in the fractions known to contain secretory organelles and mitochondria. The distribution of lysophosphatidylinositol acyltransferase paralleled that of a mitochondrial marker (succinate cytochrome C reductase). These findings extend the evidence implicating arachidonate release and reincorporation into phospholipids as a link in the pathway that culminates in pancreatic secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号