首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   7篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   9篇
  2018年   7篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   15篇
  2013年   14篇
  2012年   5篇
  2011年   24篇
  2010年   7篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2006年   7篇
  2005年   9篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有146条查询结果,搜索用时 50 毫秒
1.
Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin.  相似文献   
2.
3.
4.
Over the last decades, post‐illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light‐to‐dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene‐emitting (IE) and isoprene non‐emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods). PIBs of isoprene were unaffected by elevated CO2 and heat and drought stress in IE, while they were absent in NE plants. On the other hand, PIBs of acetaldehyde and also GLVs were strongly reduced in stress‐affected plants of all genotypes. After recovery from stress, distinct differences in PIB emissions in both genotypes confirmed different precursor pools for acetaldehyde and GLV emissions. Changes in PIBs of GLVs, almost absent in stressed plants and enhanced after recovery, could be mainly attributed to changes in lipoxygenase activity. Our results indicate that acetaldehyde PIBs, which recovered only partly, derive from a new mechanism in which acetaldehyde is produced from methylerythritol phosphate pathway intermediates, driven by deoxyxylulose phosphate synthase activity.  相似文献   
5.
Picroside II (P‐II), one of the main active components of scrophularia extract, which have anti‐oxidative, anti‐inflammatory effects, but its effect on hyperhomocysteinemia (HHcy) induced endothelial injury remains to be determined. Here, we test whether P‐II protects HHcy‐induced endothelial dysfunction against oxidative stress, inflammation and cell apoptosis. In vitro study using HUVECs, and in hyperhomocysteinemia mouse models, we found that HHcy decreased endothelial SIRT1 expression and increased LOX‐1 expression, subsequently causing reactive oxygen species generation, up‐regulation of NADPH oxidase activity and NF‐κB activation, thereby promoting pro‐inflammatory response and cell apoptosis. Blockade of Sirt1 with Ex527 or siRNASIRT1 increased LOX‐1 expression, whereas overexpression of SIRT1 decreased LOX‐1 expression markedly. P‐II treatment significantly increased SIRT1 expression and reduced LOX‐1 expression, and protected against endothelial cells from Hcy‐induced oxidative injury, inflammation and apoptosis. However, blockade of SIRT1 or overexpression of LOX‐1 attenuated the therapeutic effects of P‐II. In conclusion, our results suggest that P‐II prevents the Hcy induced endothelial damage probably through regulating the SIRT1/LOX‐1 signaling pathway.  相似文献   
6.
The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed.  相似文献   
7.
Jasmonates in arbuscular mycorrhizal interactions   总被引:2,自引:0,他引:2  
The mutualistic interaction between plants and arbuscular mycorrhizal (AM) fungi is believed to be regulated from the plant side among other signals by the action of phytohormones. Evidences for this are based mainly on application experiments and determination of phytohormone levels in AM roots by comparison to non-mycorrhizal roots. In case of jasmonates, additional proof is given by reverse genetic approaches, which led to first insights into their putative role in the establishment and functioning of the symbiosis. This review summarizes the current data about phytohormone action in AM roots and the role of jasmonates in particular.  相似文献   
8.
Lang I  Feussner I 《Phytochemistry》2007,68(8):1120-1127
The dioxygenation of polyunsaturated fatty acids is mainly catalyzed by members of the lipoxygenase enzyme family in flowering plants and mosses. Lipoxygenase products can be metabolized further and are known as signalling substances that play a role in plant development as well as in plant responses to wounding and pathogen attack. Apart from accumulating data in mammals, flowering and non-flowering plants, information on the relevance of lipid peroxide metabolism in prokaryotic organisms is scarce. Thus we aimed to isolate and analyze lipoxygenases and oxylipin patterns from cyanobacterial origin. DNA isolated from Nostoc punctiforme strain PCC73102 yielded sequences for at least two different lipoxygenases. These have been cloned as cDNAs and named NpLOX1 and NpLOX2. Both proteins were identified as linoleate 13-lipoxygenases by expression in E. coli. NpLOX1 was characterized in more detail: It showed a broad pH optimum ranging from pH 4.5 to pH 8.5 with a maximum at pH 8.0 and alpha-linolenic acid was the preferred substrate. Bacterial extracts contain more 13-lipoxygenase-derived hydroperoxides in wounded than in non-wounded cells with a 30-fold excess of non-esterified over esterified oxylipins. 9-Lipoxygenase-derived derivatives were not detectable. 13-Lipoxygenase-derived hydroperoxides in esterified lipids were present at almost equal amounts compared to non-esterified hydroperoxides in non-wounded cells. These results suggest that 13-lipoxygenases acting on free fatty acids dominate in N. punctiforme strain PCC73102 upon wounding.  相似文献   
9.
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.  相似文献   
10.
Lysyl oxidase (LOX) is implicated in several extracellular matrix related disorders, including fibrosis and cancer. Methods of inhibition of LOX in vivo include antibodies, copper sequestration and toxic small molecules such as β-aminopropionitrile. Here, we propose a novel approach to modulation of LOX activity based on the kinetic isotope effect (KIE). We show that 6,6-d2-lysine is oxidised by LOX at substantially lower rate, with apparent deuterium effect on Vmax/Km as high as 4.35 ± 0.22. Lys is an essential nutrient, so dietary ingestion of D2Lys and its incorporation via normal Lys turnover suggests new approaches to mitigating LOX-associated pathologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号