首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3659篇
  免费   237篇
  国内免费   70篇
  2024年   8篇
  2023年   55篇
  2022年   57篇
  2021年   80篇
  2020年   97篇
  2019年   85篇
  2018年   84篇
  2017年   84篇
  2016年   76篇
  2015年   102篇
  2014年   245篇
  2013年   237篇
  2012年   198篇
  2011年   240篇
  2010年   156篇
  2009年   171篇
  2008年   174篇
  2007年   173篇
  2006年   152篇
  2005年   133篇
  2004年   131篇
  2003年   117篇
  2002年   93篇
  2001年   42篇
  2000年   44篇
  1999年   25篇
  1998年   35篇
  1997年   28篇
  1996年   51篇
  1995年   51篇
  1994年   41篇
  1993年   48篇
  1992年   58篇
  1991年   45篇
  1990年   25篇
  1989年   31篇
  1988年   31篇
  1987年   31篇
  1986年   44篇
  1985年   46篇
  1984年   73篇
  1983年   59篇
  1982年   66篇
  1981年   43篇
  1980年   33篇
  1979年   28篇
  1978年   5篇
  1977年   12篇
  1976年   8篇
  1970年   3篇
排序方式: 共有3966条查询结果,搜索用时 109 毫秒
1.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   
2.
There is a lack of data on fatigue changes within 24 h among patients with multiple sclerosis. The purpose of this study was to evaluate the effect of time of day on central and peripheral fatigue during a continuous 2-min maximal voluntary contraction of the quadriceps muscle in women and men with multiple sclerosis (MS). We studied age-matched MS patients (range, 40–50 years). The inclusion criteria for patients were: a Kurtzke Expanded Disability Status score and a Fatigue Severity Scale score. We found a significant gender difference in central activation ratio (CAR) in the evening. At the end of the 2-min maximal voluntary contraction (MVC), the voluntary torque decreased by about 65% in men and women with MS in both the morning and evening. We also observed that, in women, CAR decreased markedly during the first 30 s in the evening test. The most interesting finding of our study is that central fatigue increased, whereas peripheral fatigue decreased markedly in the evening only in women. It remains unclear why women’s central fatigue is greater in the evening than in the morning.  相似文献   
3.
Summary The content of fatty acids was analysed in an exudate from roots of pine seedlings grown axenically in vermiculite with a synthetic nutrient medium. The dominating fatty acdis were fewer in the exudate than in the roots. Unsaturated fatty acids were predominant. The total lipid fraction of the exudate promoted mycelial growth in two of the three ectomycorrhizal fungi tested.  相似文献   
4.
Nitric oxide synthase (NOS) may be uncoupled to produce superoxide rather than nitric oxide (NO) under pathological conditions such as diabetes mellitus and insulin resistance, leading to cardiac contractile anomalies. Nonetheless, the role of NOS uncoupling in insulin resistance-induced cardiac dysfunction remains elusive. Given that folic acid may produce beneficial effects for cardiac insufficiency partially through its NOS recoupling capacity, this study was designed to evaluate the effect of folic acid on insulin resistance-induced cardiac contractile dysfunction in a sucrose-induced insulin resistance model. Mice were fed a sucrose or starch diet for 8 weeks before administration of folic acid in drinking water for an additional 4 weeks. Cardiomyocyte contractile and Ca2+ transient properties were evaluated and myocardial function was assessed using echocardiography. Our results revealed whole body insulin resistance after sucrose feeding associated with diminished NO production, elevated peroxynitrite (ONOO) levels, and impaired echocardiographic and cardiomyocyte function along with a leaky ryanodine receptor (RYR) and intracellular Ca2+ handling derangement. Western blot analysis showed that insulin resistance significantly promoted Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation, which might be responsible for the leaky RYR and cardiac mechanical dysfunction. NOS recoupling using folic acid reversed insulin resistance-induced changes in NO and ONOO, CaMKII phosphorylation, and cardiac mechanical abnormalities. Taken together, these data demonstrated that treatment with folic acid may reverse cardiac contractile and intracellular Ca2+ anomalies through ablation of CaMKII phosphorylation and RYR Ca2+ leak.  相似文献   
5.
6.
7.
The G protein-coupled receptor 40 (GPR40) mediates enhancement of glucose-stimulated insulin secretion in pancreatic β cells. The GPR40 agonist has been attracting attention as a novel insulin secretagogue with glucose dependency for the treatment of type 2 diabetes. The optimization study of compound 1 led to a potent and bioavailable GPR40 agonist 24, which showed insulin secretion and glucose lowering effects in rat OGTT. Compound 24 is a potential lead compound for a novel insulin secretagogue with a low risk of hypoglycemia.  相似文献   
8.
9.
Detection of variations in blood glucose concentrations by pancreatic &#103 -cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic &#103 -cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K ATP channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2 -/- mice will be described, which indicate that this transporter is ess ential for glucose sensing by pancreatic &#103 -cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.  相似文献   
10.
The effect of lanthanum ions (La3+) on the release of acetylcholine (ACh) from longitudinal muscle strips of the guinea pig ileum with the myenteric plexus attached was investigated. After an exposure of the tissue to 2 mM LaCl3 for 18 min the rate of ACh release was increased approximately eightfold and the increased release lasted for more than 100 min. The augmented release of ACh was accompanied by enhanced synthesis. At the end of the experiments (102 min after LaCl3 had been removed), when the release of ACh was still more than six times higher than in controls, the content of ACh was the same in La3+-treated and untreated tissues. Electrical field stimulation failed to cause a further increase in the release of ACh from La3+-pretreated preparations whereas ouabain released considerable more ACh when compared to controls. It is concluded from this difference that electrical stimulation and ouabain release ACh from different pools.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号