首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   5篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   21篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   2篇
  2009年   4篇
排序方式: 共有106条查询结果,搜索用时 515 毫秒
1.
The NLRP3 inflammasome assembles in response to a variety of pathogenic and sterile danger signals, resulting in the production of interleukin-1β and interleukin-18. NLRP3 is a key component of the innate immune system and has been implicated as a driver of a number of acute and chronic diseases. We report the 2.8 Å crystal structure of the NLRP3 NACHT domain in complex with an inhibitor. The structure defines a binding pocket formed by the four subdomains of the NACHT domain, and shows the inhibitor acts as an intramolecular glue, which locks the protein in an inactive conformation. It provides further molecular insight into our understanding of NLRP3 activation, helps to detail the residues involved in subdomain coordination within the NLRP3 NACHT domain, and gives molecular insights into how gain-of-function mutations de-stabilize the inactive conformation of NLRP3. Finally, it suggests stabilizing the auto-inhibited form of the NACHT domain is an effective way to inhibit NLRP3, and will aid the structure-based development of NLRP3 inhibitors for a range of inflammatory diseases.  相似文献   
2.
Reactive oxygen species (ROS) are capable of inducing cell death or apoptosis. Recently, we demonstrated that lipid-ROS can mediate ferroptosis and activation of human platelets. Ferroptosis is an intracellular iron-mediated cell death, distinct from classical apoptosis and necrosis, which is mediated through the accumulation of ROS, lipid peroxides and depletion of cellular GSH. Lately, we demonstrated that hemoglobin degradation product hemin induces ferroptosis in platelets via ROS and lipid peroxidation. In this study, we demonstrate that hemin-induced ferroptosis in platelets is mediated through ROS-driven proteasome activity and inflammasome activation, which were mitigated by Melatonin (MLT). Although inflammasome activation is linked with pyroptosis, it is still not clear whether ferroptosis is associated with inflammasome activation. Our study for the first time demonstrates an association of platelet activation/ferroptosis with proteasome activity and inflammasome activation. Although, high-throughput screening has recognized ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent ferroptosis inhibitors, having an endogenous antioxidant such as MLT as ferroptosis inhibitor is of high interest. MLT is a well-known chronobiotic hormone that regulates the circadian rhythms in vertebrates. It also exhibits potent antioxidant and ROS quenching capabilities. MLT can regulate fundamental cellular functions by exhibiting cytoprotective, oncostatic, antiaging, anti-venom, and immunomodulatory activities. The ROS scavenging capacity of MLT is key for its cytoprotective and anti-apoptotic properties. Considering the anti-ferroptotic and anti-apoptotic potentials of MLT, it could be a promising clinical application to treat hemolytic, thrombotic and thrombocytopenic conditions. Therefore, we propose MLT as a pharmacological and therapeutic agent to inhibit ferroptosis and platelet activation.  相似文献   
3.
4.
Although it has been known for decades that patients with type 2 diabetes mellitus (DM) are more susceptible to severe tuberculosis (TB) infection, the underlying immunological mechanisms remain unclear. Resistin, a protein produced by immune cells in humans, causes insulin resistance and has been implicated in inhibiting reactive oxygen species (ROS) production in leukocytes. Recent studies suggested that IL-1β production in patients with Mycobacteria tuberculosis infection correlates with inflammasome activation which may be regulated by ROS production in the immune cells. By investigating the level of resistin in different patient groups, we found that serum resistin levels were significantly higher in severe TB and DM-only groups when compared with mild TB cases and healthy controls. Moreover, elevation of serum resistin correlated with impairment of ROS production of neutrophils in patients with both DM and TB. In human macrophages, exogenous resistin inhibits the production of ROS which are important in the mycobacterium-induced inflammasome activation. Moreover, macrophages with defective ROS production had poor IL-1β production and ineffective control of mycobacteria growth. Our results suggest that increased resistin in severe TB and DM patients may suppress the mycobacterium-induced inflammasome activation through inhibiting ROS production by leukocytes.  相似文献   
5.
Harris J 《Cytokine》2011,56(2):140-144
Autophagy is a highly conserved homoeostatic mechanism for the lysosomal degradation of cytosolic constituents, including long-lived macromolecules, organelles and intracellular pathogens. Autophagosomes are formed in response to a number of environmental stimuli, including amino acid deprivation, but also by both host- and pathogen-derived molecules, including toll-like receptor ligands and cytokines. In particular, IFN-γ, TNF-α, IL-1, IL-2, IL-6 and TGF-β have been shown to induce autophagy, while IL-4, IL-10 and IL-13 are inhibitory. Moreover, autophagy can itself regulate the production and secretion of cytokines, including IL-1, IL-18, TNF-α, and Type I IFN. This review discusses the potentially pivotal roles of autophagy in the regulation of inflammation and the coordination of innate and adaptive immune responses.  相似文献   
6.
Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MΦ). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative analysis of the ultrastructural and functional characteristics of such immature APC. In addition, we investigated EBV infection/ reactivation and whether immature APC might be targets for natural killers (NK). Significant macroautophagy, mitochondrial degradation and multivesicular body formation together with the identification of herpes virus particles were morphological findings associated with immature APC. Exogenous stressors such as ATP further increased morphological signs of autophagy, including LC3 expression. Functional tests using fluorescent bacteria proved impaired phagolysosome fusion. However, immature APC were susceptible to NK-92-mediated cytolysis. We found evidence for EBV latency state II infection by detecting EBV-specific LMP1 and EBNA2 in immature APC and in whole blood of these patients. In summary, trauma-induced cytokine storms may induce maturation arrest of APC, promote ATP-induced autophagy, support EBV persistence and impair the degradation of phagocytozed bacteria through inefficient phagolysosome fusion. The susceptibility to NK-mediated cytolysis supports the hypothesis that NK function is likely to contribute to immune reconstitution after major trauma by regulating immature APC, and ATP-induced autophagy and survival.  相似文献   
7.
Rajan JV  Warren SE  Miao EA  Aderem A 《FEBS letters》2010,584(22):4627-4632
Several RNA viruses can be detected by the inflammasome, which promotes IL-1β and IL-18 secretion, but the underlying mechanisms of detection remain unclear. Cytosolic dsRNA is a replication intermediate of many RNA viruses. We show here that transfection of the dsRNA analogue poly I:C activates the NLRP3 inflammasome via a pathway requiring endosomal acidification. This detection is independent of the other poly I:C sensors: TLR3 and MDA5. These results suggest a mechanism by which cytosolic dsRNA produced during viral infection could activate the NLRP3 inflammasome.  相似文献   
8.
The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.  相似文献   
9.
Nucleotide-binding domain leucine-rich repeat proteins (NLRs) play a key role in immunity and disease through their ability to modulate inflammation in response to pathogen-derived and endogenous danger signals. Here, we identify the requirements for activation of NLRP1, an NLR protein associated with a number of human pathologies, including vitiligo, rheumatoid arthritis, and Crohn disease. We demonstrate that NLRP1 activity is dependent upon ASC, which associates with the C-terminal CARD domain of NLRP1. In addition, we show that NLRP1 activity is dependent upon autolytic cleavage at Ser(1213) within the FIIND. Importantly, this post translational event is dependent upon the highly conserved distal residue His(1186). A disease-associated single nucleotide polymorphism near His(1186) and a naturally occurring mRNA splice variant lacking exon 14 differentially affect this autolytic processing and subsequent NLRP1 activity. These results describe key molecular pathways that regulate NLRP1 activity and offer insight on how small sequence variations in NLR genes may influence human disease pathogenesis.  相似文献   
10.
Endoplasmic reticulum (ER) stress develops when the ER is overloaded with too many proteins to fold. This elicits a signaling pathway called the unfolded protein response. The unfolded protein response is physiologically required for the terminal development of B cells into antibody-secreting plasma cells. Ring Box Protein 1 (RBX1) is a 14-kDa protein necessary for ubiquitin ligation activity of the multimeric cullin ring ubiquitin ligases (CRLs). As RBX1 is shared by a large number of CRLs, alterations in its activity may lead to global changes in protein stability. We discovered that RBX1 is cleaved in the course of LPS-induced plasma cell differentiation and in multiple myeloma cell lines upon induction of pharmacological ER stress. The cleavage is executed by several caspase proteases that cleave RBX1 eight amino acids from the N terminus. To address the possible implication of RBX1 cleavage for CRL activity, we replaced the endogenous RBX1 homolog of the yeast Saccharomyces cerevisiae, Roc1, with the wild type or the N-terminal Δ8 mutant human RBX1. We show that yeast expressing the cleaved RBX1 are hypersensitive to ER stress and are impaired in CRL-mediated ubiquitination and degradation. We propose a model by which N-terminal cleavage of RBX1 impairs its activity and promotes susceptibility to ER stress induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号