首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2006年   1篇
  2003年   1篇
  1993年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有18条查询结果,搜索用时 20 毫秒
1.
Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice. Partial 3-hydroxylation of the A3 site (Pro-707) was present in tendon and bone, but absent in skin in both α-chains of the wild type animals. Type I collagen extracted from bone of P3H1 null mice shows a large reduction in 3-hydroxylation of the A3 site in both α-chains, whereas type I collagen extracted from tendon of P3H1 null mice shows little difference as compared with wild type. These results demonstrate that the A1 site in type I collagen is exclusively 3-hydroxylated by P3H1, and presumably, this enzyme is required for the 3-hydroxylation of the A3 site of both α-chains in bone but not in tendon. The increase in glycosylation of hydroxylysine in P3H1 null mice in bone was found to be due to an increased occupancy of normally glycosylated sites. Despite the severe disorganization of collagen fibrils in adult tissues, the D-period of the fibrils is unchanged. Tendon fibrils of newborn P3H1 null mice are well organized with only a slight increase in diameter. The absence of 3-hydroxyproline and/or the increased glycosylation of hydroxylysine in type I collagen disturbs the lateral growth of the fibrils.  相似文献   
2.
Tryptic peptide mapping analysis of a Chinese hamster ovary (CHO)-expressed, recombinant IgG1 monoclonal antibody revealed a previously unreported +16 Da modification. Through a combination of MSn experiments, and preparation and analysis of known synthetic peptides, the possibility of a sequence variant (Ala to Ser) was ruled out and the presence of hydroxylysine was confirmed. Post-translational hydroxylation of lysine was found in a consensus sequence (XKG) known to be the site of modification in other proteins such as collagen, and was therefore presumed to result from the activity of the CHO homolog of the lysyl hydroxylase complex. Although this consensus sequence was present in several locations in the antibody sequence, only a single site on the heavy-chain Fab was found to be modified.  相似文献   
3.
Lysyl hydroxylase catalyzes the hydroxylation of lysine residues in collagenous sequences. Three isoforms (LH1, LH2 and LH3) of lysyl hydroxylase have been characterized, and LH2 is present as two alternatively spliced forms. In order to better understand the functional differences between the isoforms in vivo, the expression of the different isoforms was studied in mouse embryos and adult tissues. Our data indicate a widespread expression of all isoforms during embryogenesis, whereas the expression profiles become more specialized in adult tissues. The expression of LH2 was more tissue-specific, whereas a uniform and housekeeping like behavior was observed for LH3. Some cells express both LH2 and LH3, while a clear cell specificity was seen in some tissues. Moreover, immunoelectron microscopy revealed differences in the localization of LH2 and LH3. LH2 was localized intracellularly in the ER in all tissues studied, whereas the localization of LH3 was either intracellular or extracellular or both, depending on the tissue. Furthermore, our data indicate that the alternative splicing of LH2 is developmentally regulated. The short form of LH2 (LH2a) is the predominant form until E11.5; the long form (LH2b) dominates thereafter and is the major form in many adult tissues. Interestingly, however, adult mouse kidney and testis express exclusively the short form, LH2a. The results reveal a specific regulation for the expression of LH isoforms as well as for alternative splicing of LH2 during embryogenesis and in different tissues.  相似文献   
4.
The tensile strength of fibrillar collagens depends on stable intermolecular cross-links formed through the lysyl oxidase mechanism. Such cross-links based on hydroxylysine aldehydes are particularly important in cartilage, bone, and other skeletal tissues. In adult cartilages, the mature cross-linking structures are trivalent pyridinolines, which form spontaneously from the initial divalent ketoimines. We examined whether this was the complete story or whether other ketoimine maturation products also form, as the latter are known to disappear almost completely from mature tissues. Denatured, insoluble, bovine articular cartilage collagen was digested with trypsin, and cross-linked peptides were isolated by copper chelation chromatography, which selects for their histidine-containing sequence motifs. The results showed that in addition to the naturally fluorescent pyridinoline peptides, a second set of cross-linked peptides was recoverable at a high yield from mature articular cartilage. Sequencing and mass spectral analysis identified their origin from the same molecular sites as the initial ketoimine cross-links, but the latter peptides did not fluoresce and were nonreducible with NaBH4. On the basis of their mass spectra, they were identical to their precursor ketoimine cross-linked peptides, but the cross-linking residue had an M+188 adduct. Considering the properties of an analogous adduct of identical added mass on a glycated lysine-containing peptide from type II collagen, we predicted that similar dihydroxyimidazolidine structures would form from their ketoimine groups by spontaneous oxidation and free arginine addition. We proposed the trivial name arginoline for the ketoimine cross-link derivative. Mature bovine articular cartilage contains about equimolar amounts of arginoline and hydroxylysyl pyridinoline based on peptide yields.  相似文献   
5.
J. Frey  A. Chamson  N. Raby 《Amino acids》1993,4(1-2):45-51
Summary The collagen study includes the analysis of its characteristic amino acids: proline, hydroxyproline, lysine, hydroxylysine. HPLC offers an interesting device if associated with on-line radiometric detection for the determination of radiolabelled amino acids in the case of metabolism studies. To avoid pre or post-column derivatization which may be poorly quantitative in the case of the hydrolysate of unpurified samples, we developed an ion-paired reversed-phase chromatography using a C8 column (econosphere C8 5µm, length: 250 mm, ID: 4.6 mm from Alltech Ass.) and an elution carried out with an acetonitrile gradient in heptane-sulfonate solution. A direct detection at 210 nm was used. Nineteen amino acids were separated within 40 min. Lag time was 7.3 min between hydroxyproline and proline, and 6.9 min between hydroxylysine and lysine. In the case of radiolabelled amino acid, there was a linear correlation (r = 0.92) between HPLC and ion-exchange chromatography.  相似文献   
6.
Lysyl hydroxylases (LH), which catalyze the post-translational modifications of lysines in collagen and collagen-like proteins, function as dimers. However, the amino acids responsible for dimerization and the role of dimer formation in the enzymatic activities of LH have not yet been identified. We have localized the region responsible for the dimerization of lysyl hydroxylase 3 (LH3), a multifunctional enzyme of collagen biosynthesis, to a sequence of amino acids between the glycosyltransferase activity and the lysyl hydroxylase activity domains. This area is covered by amino acids 541-547 in human LH3, but contains no cysteine residues. The region is highly conserved among LH isoforms, and is also involved in the dimerization of LH1 subunits. Dimerization is required for the LH activity of LH3, whereas it is not obligatory for the glycosyltransferase activities. In order to determine whether complex formation can occur between LH molecules originating from different species, and between different LH isoforms, double expressions were generated in a baculovirus system. Heterocomplex formation between mouse and human LH3, between human LH1 and LH3 and between human LH2 and LH3 was detected by western blot analyses. However, due to the low amount of complexes formed, the in vivo function of heterocomplexes remains unclear.  相似文献   
7.
Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen.  相似文献   
8.
Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846-8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization.  相似文献   
9.
Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (SN) cross-links, a covalent cross-link that forms between Met93 and Hyl211 at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains.  相似文献   
10.
The regulation of the glycosylations of hydroxylysine was studied in isolated chick-embryo cells by labelling with a [14C]lysine pulse. The course of the procollagen lysyl modifications was compared in tendon and cartilage cells, and the effect on the glycosylations of the degree of lysyl hydroxylation and the concentration of Mn2+ and Fe2+ were also studied, in tendon cells. Procollagen triple helix formation was inhibited in most experiments in order to eliminate the effect of this process on the continuation of the reactions.Both in the tendon and cartilage cells the intracellular lysyl modifications proceeded in a biphasic fashion. After an initial sharp linear increase, the reactions did not cease but were protracted at a slower but constant rate. Lysyl hydroxylation was followed by rapid galactosylation in both cell types and this was followed almost immediately by rapid glucosylation, suggesting a close association of the corresponding enzymes. The data further suggest that other factors must also exist, in addition to the differences in the timing of triple helix formation and the actual hydroxylysine content, which are responsible for the different amounts of galactose in the collagens synthesized by these cell types. The amount of glycosylgalactosylhydroxylysine nevertheless seemed to be determined by the available acceptor sites, i.e., the amount of galactosylhydroxylysine.In further experiments wiht tendon cells the oxygen participating in lysyl hydroxylation was displaced by nitrogen at various points in time. When the degree of lysyl hydroxylation was reduced to less than one-third of the original, the total amounts of glycosylated residues decreased correspondingly, but their proportion relative to total hydroxylysine remained unchanged.Extra Mn2+ increased the proportion of galactosylated hydroxylysine, suggesting that the activity of hydroxylysyl galactosyltransferase is not saturating in respect of the catalyzed reaction. Experiments on the addition of Fe2+ or its chelation by α, α′-dipyridyl gave indications that the presence of this co-factor is not required for either glycosylation reaction in isolated tendon cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号