首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   1篇
  国内免费   2篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   12篇
  2008年   5篇
  2007年   10篇
  2006年   15篇
  2005年   12篇
  2004年   10篇
  2003年   8篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有131条查询结果,搜索用时 860 毫秒
1.
Abstract Growth of Pseudomonas putida JD1 on 4-ethylphenol results in the production of the flavocytochrome c, 4-ethylphenol methylenehydroxylase. Both p -cresol and 4- n -propylphenol are substrates for this enzyme. 4-Ethylphenol methylenehydroxylase is also produced by the organism when grown with 4- n -propylphenol. However, when grown with p -cresol, a different hydroxylase is produced which shows greater activity towards p -cresol than towards 4-ethylphenol, and is not active towards 4- n -propylphenol.  相似文献   
2.
Summary Penicillin V (phenoxymethyl penicillin) is produced by industrial strains ofPenicillium chrysogenum in the presence of phenoxyacetic acid (POAc), a side-chain precursor for the penicillin V molecule. The wild-type strain ofP. chrysogenum produces an undesirable penicillin byproduct,para-hydroxypenicillin V (p-OH penicillin V), in addition to penicillin V, viapara-hydroxylation of POAc and subsequent incorporation of thep-OH phenoxyacetic acid into the penicillin molecule. Most of thep-OH penicillin V is produced late in cycle when the POAc concentration in the medium is nearly depleted. The level ofp-OH penicillin V produced by the control strain ranges up to 10–15% of the total penicillins produced. 3-Phenoxypropionic acid andp-bromophenylacetic acid partially inhibit the formation ofp-OH penicillin V with a minimal effect on penicillin V productivity. Mutants deficient in their ability to hydroxylate POAc were found to produce lower levels ofp-OH penicillin V. Multi-step mutation and screening, starting with the wild-type strain, have culminated in isolation of mutants which producep-OH penicillin V as 1% of the total penicillins with no adverse effect on penicillin V productivity.  相似文献   
3.
The white flowering mutant W48 of Petunia hybrida is dominant for the hydroxylation gene Hf1 and homozygous recessive for the hydroxylation gene Ht1 and the anthocyanin gene An1. Flower buds of this mutant accumulate dihydrokaempferol-glucosides. Thus the effect of Hf1 being dominant is not the hydroxylation of the C15 skeleton, as is the case in mutants that are able to synthesize anthocyanins. This can be explained either by a feed-back inhibition of the hydroxylation by small amounts of dihydromyricetin (glucosides), or by a controlling effect of the gene An1 on the expression of Hf1. However, the white flowering mutant W58, which is homozygous recessive for the gene An6 and dominant for Hf1, accumulates dihydromyricetin (glucosides). This excludes a possible feed-back inhibition by dihydromyricetin and we conclude that An1 controls the expression of Hf1. Feeding of radioactive malonic acid to isolated flower limbs of mutants able to synthesize anthocyanins, leads to the incorporation of radioactivity into dihydrokaempferol (glucosides) and dihydroquercetin (glucosides). These results show that glucosylation of dihydroflavonols is a normal event in anthocyanin biosynthesis and is not induced by an inhibition of anthocyanin synthesis.  相似文献   
4.
The process of progesterone 11α-hydroxylation by the pelleted growth form of the filamentous fungus Rhizopus nigricans has been described with a mathematical model, based on Michaelis-Menten enzyme kinetics and the rate of substrate dissolution. It was confirmed that the low water solubility of steroids is the limiting step of this process at high steroid concentrations. In order to overcome this problem, β-cyclodextrin, which is known to form inclusion complexes with these organic compounds, was added to the production medium. The phase solubility of the steroid-β-cyclodextrin system was investigated and the effect of β-cyclodextrin addition on progesterone biotransformation evaluated. Enhancement of steroid solubility was demonstrated and nearly two-fold increase in reaction rate was found in the presence of β-cyclodextrin.  相似文献   
5.
Directional modifications of resibufogenin 1 by Mucor subtilissimus and Pseudomonas aeruginosa were carried out. The substrate was hydroxylated at C-12 by M. subtilissimus AS 3.2454, from which a major product 12-hydroxyresibufogenin 2 was obtained. Then product 2 was dehydrogenated by P. aeruginosa AS 1.860, which resulted in a new compound 12β-hydroxy-3-keto-resibufogenin 3.  相似文献   
6.
9α-羟基雄甾-4-烯-3,17-二酮(9-OH-AD)是一种重要的甾体药物中间体,可以用来制备β-甾酮,地塞米松和其他类固醇化合物。3-甾酮9α-羟基化酶(KSH)是由两个亚基即末端氧化亚基(KshA)和铁氧还蛋白还原亚基(KshB)构成的。在本研究中,人工合成了来源于分枝杆菌Mycobacterium sp.Strain VKM Ac-1817D的kshA和kshB基因,通过优化表达载体促进了KshA和KshB在E.coli BL21(DE3)中的可溶性表达,并探究了催化体系中KSH还原亚基和氧化亚基的最适添加比例。此外,KSH转化雄甾-4-烯-3,17-二酮(AD)为9-OH-AD的过程中需要辅酶NADH。本研究构建了羟基化反应与利用葡萄糖脱氢酶(GDH)的NADH辅酶再生反应的偶联体系。为了进一步提高转化效率,本研究进行了转化条件的优化,并采取了分批补料的策略,最终9-OH-AD产量为4.78 g/L,转化率为96.7%。此种酶介导的转化生产9-OH-AD的方法为甾体药物生产提供了一种环境友好和经济实用型的新策略。  相似文献   
7.
A vanillate (4-hydroxy-3-methoxybenzoate)-utilizing bacterium that is unable to utilize p-cresol (4-methylphenol) or 2,4-xylenol (2,4-dimethylphenol) as sole source of carbon and energy was isolated and identified as Pseudomonas fluorescens. The organism employs an inducible hydroxylase (decarboxylating), a fungal mode of attack, rather than a demethylase or methylhydroxylase as the initial step in vanillate metabolism. The product of the initial hydroxylation reaction, methoxyhydroquinone, a derivative that could only be generated with the appropriate groups, hydroxyl and carboxyl, parato each other on the benzene ring, was identified using HPLC analysis. This organism may prove useful in the commercial production of methoxyquinone and methoxyhydroquinone derivatives from renewable resources.  相似文献   
8.
A new stemodinoside, stemodin-alpha-L-arabinofuranoside (5), was isolated from the plant Stemodia maritima. Incubation of stemodin (2) with Rhizopus oryzae ATCC 11145 gave 2 alpha,7 beta,13(S)-trihydroxystemodane (17) and 2 alpha,3 beta,13(S),16 alpha-tetrahydroxystemodane (18) whilst stemodinone (8) afforded 6 alpha,13(S)-dihydroxystemodan-2-one (19). The bioconversion of 2 beta,13(S)-dihydroxystemodane (10) by the fungus yielded 2 beta,7 beta,13(S)-trihydroxystemodane (20) whereas stemod-12-en-2-one (9) provided 7 beta,17-dihydroxystemod-12-en-2-one (21). The results provide useful information about the relationship between the functional groups of the substrates and their potential for bioconversion.  相似文献   
9.
For a better understanding of the role of iron imbalance in neuropathology, a liposoluble iron complex (ferric hydroxyquinoline, FHQ) was injected into striatum of rats. The effects of two modalities of iron injections on brain damage, hydroxyl radical ( •OH) production (assessed by the salicylate method coupled to microdialysis) and tissue reactive iron level (evaluated ex vivo by the propensity of the injected structure for lipid peroxidation) were examined. Rapid injection of FHQ (10 nmoles of 5 mM FHQ pH 3 solution over 1-min period) but not that of corresponding vehicle led to extensive damage associated with increased tissue free iron level in the injected region. Conversely, neither lesion nor free iron accumulation was observed after slow FHQ injection (10 nmoles of a 100 μM FHQ pH 7 solution over 1-h period) as compared to corresponding vehicle injection. Production of •OH was induced by slow FHQ injection but not by rapid FHQ injection, probably as a result of in vivo abolition of iron-induced •OH formation by acid pH. Indeed, rapid injection of FAC pH 7 (ferric ammonium citrate, 5 mM in saline) was associated with •OH formation whereas rapid injection of FAC pH 3 did not. Our results identify the rate of iron delivery to cells as an important determinant of iron toxicity and do not support a major role for extracellular •OH in damage associated with intracerebral iron injection.  相似文献   
10.
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction, partially purified, and characterized. The enzyme catalyzed the incorporation of oxygen atoms of H2O into the hydroxyl group. The dehydrogenase hydroxylated quinolinic acid and pyrazine-2,3-dicarboxylic acid to form 6-hydroxyquinolinic acid and 5-hydroxypyrazine-2,3-dicarboxylic acid, respectively. Phenazine methosulfate was the preferred electron acceptor for quinolinate dehydrogenase. 6-Hydroxyquinolinate decarboxylase, catalyzing the nonoxidative decarboxylation of 6-hydroxyquinolinic acid, was purified to homogeneity and characterized. The purified enzyme had a molecular mass of approximately 221 kDa and consisted of six identical subunits. The decarboxylase specifically catalyzed the decarboxylation of 6-hydroxyquinolinic acid to 6-hydroxypicolinic acid, without any co-factors. The N-terminal amino acid sequence was homologous with those of bacterial 4,5-dihydroxyphthalate decarboxylases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号