首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   0篇
  国内免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   11篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有149条查询结果,搜索用时 17 毫秒
1.
Cycles in cannibalistic egg-larval interactions   总被引:5,自引:0,他引:5  
A model of a cannibalistic larval-egg interaction such as occurs in Tribolium is developed which leads to a system of nonlinear Volterra integral equations. I determine the local stability properties of the unique equilibrium point of the model. A Hopf bifurcation analysis shows that the model always undergoes a subcritical bifurcation when stability is lost. Numerical solutions confirm the presence of multiple attractors over a range of parameter values. The form of the cycles observed in the numerical solutions is analogous to that observed in laboratory populations of Tribolium.  相似文献   
2.
We study a system of two integrodifierential equations which models the evolution of a biotic species feeding on an abiotic resource. We also consider nutrient recycling with time delay. By Hopf bifurcation theory we prove the existence of stable oscillations for a range of values of the input of nutrients.Work performed within the activity of the research group Evolution Equations and Physico-Mathematical Applications, M.P.I. (Italy), and under the auspices of G.N.F.M., C.N.R. (Italy)  相似文献   
3.
Some epidemiological models with nonlinear incidence   总被引:20,自引:0,他引:20  
Epidemiological models with nonlinear incidence rates can have very different dynamic behaviors than those with the usual bilinear incidence rate. The first model considered here includes vital dynamics and a disease process where susceptibles become exposed, then infectious, then removed with temporary immunity and then susceptible again. When the equilibria and stability are investigated, it is found that multiple equilibria exist for some parameter values and periodic solutions can arise by Hopf bifurcation from the larger endemic equilibrium. Many results analogous to those in the first model are obtained for the second model which has a delay in the removed class but no exposed class.Research supported in part by Centers for Disease Control Contract 200-87-0515. Support services provided at University House Research Center at the University of IowaResearch supported in part by NSERC A-8965 and the University of Victoria President's Committee on Faculty Research and Travel  相似文献   
4.
Measuring the blood flow is still limited by current imaging technologies and is generally overcome using computational fluid dynamics (CFD) which, because of the complex geometry of blood vessels, has widely relied on tetrahedral meshes. Hexahedral meshes offer more accurate results with lower-density meshes and faster computation as compared to tetrahedral meshes, but their use is limited by the far more complex mesh generation. We present a robust methodology for conformal and structured hexahedral mesh generation – applicable to complex arterial geometries as bifurcating vessels – starting from triangulated surfaces. Cutting planes are used to slice the lumen surface and to construct longitudinal Bezier splines. Afterwards, an isoparametric transformation is used to map a parametrically defined quadrilateral surface mesh into the vessel volume, resulting in stacks of sections which can then be used for sweeping. Being robust and open source based, this methodology may improve the current standard in patient-specific mesh generation and enhance the reliability of CFD to patient-specific haemodynamics.  相似文献   
5.
In many existing predator–prey or plant–herbivore models, the numerical response is assumed to be proportional to the functional response. In this paper, without such an assumption, we consider a diffusive plant–herbivore system with Neumann boundary conditions. Besides stability of spatially homogeneous steady states, we also derive conditions for the occurrence of Hopf bifurcation and steady-state bifurcation and provide geometrical methods to locate the bifurcation values. We numerically explore the complex transient spatio-temporal behaviours induced by these bifurcations. A large variety of different types of transient behaviours including oscillations in one or both of space and time are observed.  相似文献   
6.
Distinct biotic interactions in multi-species communities are a ubiquitous force in the natural ecosystem, and this force is an essential determinant of community stability and species coexistence outcomes. We conduct numerical simulations and bifurcation analysis of partial differential equations to gain better understanding and ecological insights into how predation (a), predator handling time (h), and local dispersal affect multi-species community dynamics. This system consists of resource-mutualist-exploiter-competitor interactions and local dispersal. From the inspection of our numerical simulations and co-dimension one bifurcation analysis findings, we discover several critical values that correspond to transcritical bifurcation, subcritical and supercritical Hopf bifurcations. This occurs as we vary the bifurcation parameters a and h in this complex ecological system under symmetric and asymmetric dispersal scenarios. Furthermore, the interplay between these local bifurcation points results in an exciting co-dimension two bifurcations, i.e., Bogdanov-Takens and cusp bifurcation points, respectively, which act as the synchronization points in this complex ecological system. From an ecological viewpoint, we find that (i) the effect of the no-dispersal scenario supports the maintenance of species biodiversity when the predation strength is moderate; (ii) symmetric dispersal induces both subcritical and supercritical Hopf bifurcation and support species diversity for moderate predation strength; and (iii) asymmetric dispersal promotes species diversity as it simplifies the bifurcation changes in dynamics by eliminating the subcritical bifurcations that trigger uncertainty, and this dispersal mechanism mediates species coexistence outcomes. Fundamentally, stable limit cycles have been reported as predator handling time varies in some ecological models; however, we observed in our bifurcation analysis the emergence of the unstable limit cycle as predator handling time changes. We discover that intense predator handling time destabilizes this complex ecological community. In general, our results demonstrate the influential roles of predation, predator handling time, and local dispersal in determining this system’s coexistence dynamics. This knowledge provides a better understanding of species conservation and biological control management.  相似文献   
7.
The period (in the order of 40 to 80 days) in periodic chronic myelogenous leukemia (PCML) oscillations is quite long compared with the duration of the cell cycle of the hematopoietic stem cells from which the oscillations are presumed to originate (in the order of one or two days). Our objective is to understand the origin of these long-period oscillations using a G0 model for stem cell dynamics. We determine the local stability conditions and show under what conditions the Hopf bifurcation may occur. We interpret the role of each parameter in the loss of stability, and then examine a simpler model to try to deduce possible changes at the stem-cell level that might be responsible for the characteristics PCML.  相似文献   
8.
The present paper shows possible effects of antiretroviral treatment on the dynamics of the spread of the disease of human immunodeficiency virus infection in a population of varying size. By introducing time delays, we model the latency period and the delayed onset of positive treatment effects in the patients. The Hopf bifurcation and stability behaviour of the delay differential-equation model are analysed and simulations for different scenarios depending on the size of the treatment-induced delay are presented, and the results are discussed in detail.  相似文献   
9.
We present a dynamical model of the production and regulation of circulating blood neutrophil number. This model is derived from physiologically relevant features of the hematopoietic system, and is analysed using both analytic and numerical methods. Supercritical Hopf bifurcations and saddle-node bifurcations of limit cycles are shown to exist. We make the estimation of kinetic parameters for dogs and then apply the model to cyclical neutropenia (CN) in the grey collie, a rare disorder in which oscillations in all blood cell counts are found. We conclude that the major cause of the oscillations in CN is an increased rate of apoptosis of neutrophil precursors which leads to a destabilization of the hematopoietic stem cell compartment.  相似文献   
10.
Structured population on two patches: modeling dispersal and delay   总被引:3,自引:0,他引:3  
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal (over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号