首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2018年   1篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有12条查询结果,搜索用时 328 毫秒
1.
We hereby report studies that suggest a role for serum exosomes in the anchorage-independent growth (AIG) of tumor cells. In AIG assays, fetal bovine serum is one of the critical ingredients. We therefore purified exosomes from fetal bovine serum and examined their potential to promote growth of breast carcinoma cells in soft agar and Matrigel after reconstituting them into growth medium (EEM). In all the assays, viable colonies were formed only in the presence of exosomes. Some of the exosomal proteins we identified, have been documented by others and could be considered exosomal markers. Labeled purified exosomes were up-taken by the tumor cells, a process that could be competed out with excess unlabeled vesicles. Our data also suggested that once endocytosed by a cell, the exosomes could be recycled back to the conditioned medium from where they can be up-taken by other cells. We also demonstrated that low concentrations of exosomes activate MAP kinases, suggesting a mechanism by which they maintain the growth of the tumor cells in soft agar. Taken together, our data demonstrate that serum exosomes form a growth promoting platform for AIG of tumor cells and may open a new vista into cancer cell growth in vivo.  相似文献   
2.
Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.  相似文献   
3.
Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. The drug resistance has a genetic basis that is caused by an abnormal gene expression. There are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints ( and ). siRNA is used to silence the drug resistant phenotype and prevent this drug resistance response. Of the listed types of drug resistance, pump-type resistance (e.g., high expression of ATP-binding cassette transporter proteins such as P-glycoproteins (Pgp; also known as multi-drug resistance protein 1 or MDR1, encoded by the ATP-Binding Cassette Sub-Family B Member 1 (ABCB1) gene)) and apoptosis inhibition (e.g., expression of anti-apoptotic proteins such as Bcl-2) are the most frequently targeted for gene silencing. The co-delivery of siRNA and chemotherapeutic drugs has a synergistic effect, but many of the current projects do not control the drug release from the nanocarrier. This means that the drug payload is released before the drug resistance proteins have degraded and the drug resistance phenotype has been silenced. Current research focuses on cross-linking the carrier's polymers to prevent premature drug release, but these carriers still rely on environmental cues to release the drug payload, and the drug may be released too early. In this review, we studied the release kinetics of siRNA and chemotherapeutic drugs from a broad range of carriers. We also give examples of carriers used to co-deliver siRNA and drugs to drug-resistant tumor cells, and we examine how modifications to the carrier affect the delivery. Lastly, we give our recommendations for the future directions of the co-delivery of siRNA and chemotherapeutic drug treatments.  相似文献   
4.
Copolymers of sodium 4‐styrene sulfonate (SS) and hydroxyethyl methacrylate (HEMA) were investigated as sequestrants of α‐gliadin, a gluten protein, for the treatment of gluten intolerance. The interactions of α‐gliadin with poly(SS) and poly(HEMAco‐SS) with 9 and 26 mol% SS content were studied at gastric (1.2) and intestinal (6.8) pH using circular dichroism and measurements of turbidity, dynamic light scattering and zeta potential. The interactions and their influence on α‐gliadin secondary and aggregated structures depended mainly on the ratio of polymer negative and protein positive charges at pH 1.2, and on polymer SS content at polymer concentrations providing in excess of negative charges at either pH. Poly(SS) could not form complex particles with α‐gliadin in a sufficient excess of negative charges. Copolymerization with HEMA enhanced the formation of complex particles. Poly(HEMAco‐SS) with intermediate SS content was found to be the most effective sequestrant for α‐gliadin. This study provides insight into design considerations for polymer sequestrants used in the supportive treatment of celiac disease. © 2009 Wiley Periodicals, Inc. Biopolymers 93:418–428, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
5.
Aims: The effect of different concentrations of 2‐hydroxyethyl methacrylate (HEMA) was evaluated on biofilm formation and preformed biofilm of Streptococcus mitis, Streptococcus mutans and Streptococcus oralis, alone or combined to each other. Methods and Results: Twofold serial dilution of HEMA ranged from 12 to 0·75 mmol l?1 was added to Streptococcal broth cultures and mature biofilms in 96‐well‐microtitre plates to evaluate bacterial biomass and cell viability. HEMA affected the Streptococcal population in a strain‐specific way producing few significant effects. A reduction on biofilm formation and a detachment of preformed biofilm was recorded in Strep. mitis ATCC 6249, whereas in mixed cultures, the monomer expressed a general aggregative effect on mature biofilms. A reduction in cell viability was also recorded in an HEMA‐concentration‐dependent way in each experimental condition studied. Conclusions: These results suggest that the HEMA prevalent effects are both the reduction of bacterial adhesion to a polystyrene surface and the increase in dead cells also characterized by an aggregative status. Significance and Impact of the Study: Understanding the potential effect of HEMA, released from resin‐based materials, on oral bacteria may furnish information for surveillance of the risk reduction in secondary caries via hindering biofilm generation.  相似文献   
6.
Magnetic bead cellulose particles and magnetic poly(HEMA-co-EDMA) microspheres with immobilized DNase I were used for degradation of chromosomal and plasmid DNAs. Magnetic bead particles were prepared from viscose and magnetite powder. Magnetic poly(HEMA-co-EDMA) microspheres were prepared by dispersion copolymerization of 2-hydroxyethyl methacrylate and ethylene dimethacrylate in the presence of magnetite. Divalent cations (Mg(2+), Ca(2+), Mn(2+) and Co(2+)) were used for the activation of DNase I. A comparison of free and immobilized enzyme (magnetic bead particles) activities was carried out in dependence on pH and activating cation. The maximum of the activity of immobilized DNase I was shifted to lower pH compared with free DNase I. DNase I immobilized on magnetic bead cellulose was used 20 times in the degradation of chromosomal DNA. Its residual activity was influenced by the nature of activating divalent cation. The immobilized enzyme with decreased activity was reactivated by Co(2+) ions.  相似文献   
7.
The effects of storing 2-hydroxy-ethyl methacrylate (HEMA) solutions for embedding tissues for light microscopy were studied using three commercially available HEMA embedding kits: Technovit 7100, Technovit 8100, and JB-4. These HEMA solutions were examined at various times of storage over a period of one year using a panel of physicochemical techniques including gas chromatography, tltration, viscosimetry, determination of the maximum polymerization temperature and the time required to reach the maximum temperature, and detection of degradation products of HEMA monomers by histochemical procedures. The quality of the resin blocks was examined by the observation of mini-folds in sections. Data obtained from these tests showed that the release of by-products as a result of the degradation of the HEMA monomer during storage of HEMA solutions does not occur. Development of cross-linking agents by transesterification of HEMA monomer was not detected either. Gradual decrease of the inhibitor concentration during storage proved to be the main cause of the reduction of shelf-life of HEMA solutions. Inconsistent tissue infiltration after storage may be due to decreased rates of tissue penetration as a result of HEMA chain lengthening. Guidelines for safe and economical handling of HEMA mixtures are given.  相似文献   
8.
Membrane separations using molecularly imprinted polymers   总被引:7,自引:0,他引:7  
This review presents an overview on the promising field of molecularly imprinted membranes (MIM). The focus is onto the separation of molecules in liquid mixtures via membrane transport selectivity. First, the status of synthetic membranes and membrane separation technology is briefly summarized, emphasizing the need for novel membranes with higher selectivities. Innovative principles for the preparation of membranes with improved or novel functionality include self-assembly or supramolecular aggregation as well as the use of templates. Based on a detailed analysis of the literature, the main established preparation methods for MIM are outlined: simultaneous membrane formation and imprinting, or preparation of imprinted composite membranes. Then, the separation capability of MIM is discussed for two different types, as a function of their barrier structure. Microporous MIM can continuously separate mixtures based on facilitated diffusion of the template, or they can change their permeability in the presence of the template ("gate effect"). Macroporous MIM can be developed towards molecule-specific membrane adsorbers. Emerging further combinations of molecularly imprinted polymers (MIPs), especially MIP nanoparticles or microgels, with membranes and membrane processes are briefly outlined as well. Finally, the application potential for advanced MIM separation technologies is summarized.  相似文献   
9.
The construction of biomaterials with which to limit the growth of cells or to limit the adsorption of proteins is essential for understanding biological phenomena. Here, we describe a novel method to simply and easily create thin layers of poly (2‐hydroxyethyl methacrylate) (p‐HEMA) for protein and cellular patterning via etching with ethanol and microfluidic devices. First, a cell culture surface or glass coverslip is coated with p‐HEMA. Next, a polydimethylsiloxane (PDMS) microfluidic is placed onto the p‐HEMA surface, and ethanol is aspirated through the device. The PDMS device is removed, and the p‐HEMA surface is ready for protein adsorption or cell plating. This method allows for the fabrication of 0.3 µm thin layers of p‐HEMA, which can be etched to 10 µm wide channels. Furthermore, it creates regions of differential protein adhesion, as shown by Coomassie staining and fluorescent labeling, and cell adhesion, as demonstrated by C2C12 myoblast growth. This method is simple, versatile, and allows biologists and bioengineers to manipulate regions for cell culture adhesion and growth. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:243–248, 2018  相似文献   
10.
Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2‐hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2‐methacryloyloxymethyl acetoacetate (MOEAA), 2‐methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC‐containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 966–973, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号