首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   6篇
  国内免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   11篇
  2007年   15篇
  2006年   2篇
  2005年   2篇
  2004年   8篇
  2003年   5篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有107条查询结果,搜索用时 281 毫秒
1.
Generalist predators have the capacity to restrict pest population growth, especially early in the season before densities increase. However, their polyphagous feeding habits sometimes translate into reduced pest consumption when they target alternative prey. An order-specific monoclonal antibody was developed to examine the strength of trophic connections between Diptera, a major category of non-pest prey, and linyphiid spiders in alfalfa. We report the development and characterization of a monoclonal antibody with order-level specificity to Diptera. This antibody elicited strong absorbance to 22 Diptera from 13 families, no false-positive reactivity to non-dipteran invertebrates, and antigen detection periods following prey consumption that were comparable between spiders. Over 900 field-collected females of the linyphiid spiders Erigone autumnalis and Bathyphantes pallidus were screened for Diptera antigen. Significantly more B. pallidus screened positive for Diptera (40%) compared to E. autumnalis (16%), indicating differential reliance on these prey. In parallel with the collection of spiders for gut-content analysis, prey availability was estimated at web sites. The two spiders exhibited different feeding responses to prey availability. Consumption of Diptera by B. pallidus was strongly correlated with Diptera abundance whilst the availability of other potential prey did not influence predation rates. Conversely, E. autumnalis did not prey upon Diptera in proportion to availability, but increased Collembola activity-density reduced dipteran consumption. Integration of molecular gut-content analysis with precise sampling of prey demonstrated how two closely related linyphiid spiders exhibit different feeding responses to the availability of prey under natural field conditions. Elucidating the feeding preferences of natural enemies is critical to effective incorporation of biological control by generalist predators in the management of agricultural pests.  相似文献   
2.
Summary The term specialized has been used to describe species that possess unique functional attributes and/or a narrow, stereotyped range of attributes, but there are few comparative functional analyses of specialists and generalists. If species with functional morphological specializations are capable of functioning over a broad range, the link between morphology and ecology may be relaxed under certain environmental conditions. In this study, high-speed films of jaw movements during prey capture were compared statistically for three coexisting coral reef fish species in the family Labridae, one trophic specialist and two trophic generalists. The trophic specialist possessed a unique functional feature related to the movement of the hyoid in the floor of the mouth, while the trophic generalists were not observed to possess any functional specializations. All three species showed functional versatility in that they were able to adjust their prey capture mechanism in response to the evasive potential of the prey. The functional versatility of trophic specialists has implications for ecomorphological studies, since species characterized as possessing unique functional or morphological features may demonstrate marked flexibility in ecological variables such as diet or foraging behavior, decreasing the likelihood of identifying correlations between morphology and ecology.  相似文献   
3.
Phytoseius hawaiiensis (Acari: Phytoseiidae) had relatively long periods of preoviposition, oviposition and postoviposition (4.6, 46.9 and 52.0 days, respectively, at 24 °C), and a relatively low fecundity (31.4 eggs per female), compared to other phytoseiid species. The most favorable food tested was all stages of Oligonychus punicae (Hirst), but various other species of mite prey as well as pollen also promoted oviposition. Extreme variation was observed in hatching time of the eggs, from 10 min (rare) to over 4 days (common). Occasionally, females apparently retain their eggs until just before larvae hatch, as eggs containing developed larvae were observed inside some females. Results of experiments suggested that unsuitable substrate (e.g. for oviposition) is a factor which induces longer egg retention prior to oviposition.
Résumé Chez Phytoseius hawaiiensis, les durées des périodes précédant la ponte, correspondant à la ponte et succédant à la ponte, sont relativement longues; respectivement 4, 6; 31, 4 et 52 jours à 24 °C; dans ces conditions, la fécondité est relativement basse: 31, 4 oeufs par femelle. Oligonychus punicae (aux différents stades) a constitué le meilleur aliment essayé, mais diverses autres espèces d'acariens ainsi que le pollen induisent la ponte. La date d'éclosion des oeufs a présenté une très grande variabilité, de 10 min (rare) à plus de 4 jours (fréquent). Souvent, les femelles semblent retenir leurs oeufs jusqu'au moment précédant l'éclosion des larves, car des oeufs contenant des larves développées on été observés dans quelques femelles. Les résultats des expériences ont suggére qu'un substrat défavorable (pour la ponte) induit une plus longue rétention de la ponte.
  相似文献   
4.
5.
在猎物卵不同密度下,拟长毛钝绥螨(Amblyseius pseudolongispinosus)随其种群密度的增加(不超过10头/叶片),个体之间不存在干扰作用;捕食螨的搜寻活动和产卵分布对猎物分布的变动有一定的时滞性;聚集行为往往是由于某些生境中猎物被消耗殆尽后引起的,这与捕食螨在猎物卵不同密度下的扩散作用和干扰作用较弱有关。  相似文献   
6.
Microbial growth under extreme conditions is often slow. This is partly because large amounts of energy are diverted into cellular mechanisms that allow survival under hostile conditions. Because this challenge is universal and diversity in extreme environments is low compared to non-extreme environments, slow-growing microorganisms are not overgrown by other species. In some cases, especially when nutrients are scarce, slow growth was even shown to increase stress tolerance. And in at least some species of extremotolerant and extremophilic fungi, growth rate appears to be coupled with their very unusual morphologies, which in turn may be an adaptation to extreme conditions. However, there is more than one strategy of survival in extreme environments. Fungi that thrive in extremes can be divided into (i) ubiquitous and polyextremotolerant generalists and (ii) rarely isolated specialists with narrow ecological amplitudes. While generalists can compete with mesophilic species, specialists cannot. When adapting to extreme conditions, the risk of an evolutionary trade-off in the form of reduced fitness under mesophilic conditions may limit the maximum stress tolerance achievable by polyextremotolerant generalists. At the same time, specialists are rarely found in mesophilic environments, which allows them to evolve to ever greater extremotolerance, since a reduction of mesophilic fitness is likely to have little impact on their evolutionary success.  相似文献   
7.
Two species of Phytoseiidae are found in the same agroecosystem: Typhlodromus exhilaratus prevails in vine plots, while T. phialatus prevails in uncultivated surrounding areas. The objective of the present paper was to investigate whether the poor settlement of T. phialatus in vine plots can be explained by intraguild predation of these two species and/or cannibalism. Predatory abilities of the females on larvae and protonymphs were studied under laboratory conditions. A first experiment was conducted with only conspecific or heterospecific phytoseiid prey, in a second experiment Tetranychus urticae eggs were added to the phytoseiid prey. Oviposition, prey consumption, and escape rates of females were recorded. Oviposition and intraguild predation rates were higher for T. exhilaratus than for T. phialatus. Typhlodromus exhilaratus consumed fewer conspecifics than heterospecific phytoseiids, and oviposited when feeding on both diets. Typhlodromus phialatus consumed equal amounts of con- and heterospecifics. Although these two generalist predators belong to the type III defined by McMurtry and Croft (Annual Review of Entomology 42:291–321, 1997), our results suggest that they have different predation behaviour. However, because these results were obtained in experiments where no choice was given between the two phytoseiid species, they are difficult to link to previous studies conducted on the intraguild predation of the Phytoseiidae. The greater voracity and prolificacy of T. exhilaratus could partially explain the poor settlement of T. phialatus in vineyards and the predominance of T. exhilaratus. However, a full understanding of this phenomenon will require the study of other factors, such as susceptibility to pesticides and micro-climatic conditions, as well as the ability to cope with different food sources and host plants.  相似文献   
8.
Habitat loss and fragmentation are known to reduce patch sizes and increase their isolation, consequently leading to modifications in species richness and community structure. Calcareous grasslands are among the richest ecosystems in Europe for insect species. About 10% (1,150 ha) of the total area of a calcareous ridge region (Calestienne, Belgium) and its butterfly community was analysed over a timeframe of about 100 years. Since 1905 to present day (2005), the Calestienne region has undergone both calcareous grassland loss and fragmentation: not only did calcareous grassland size decrease and isolation increase, but also, the number of calcareous grassland patches within the landscape increased until 1965, and subsequently decreased, clearly reflecting the effects of fragmentation. These processes have had a profound effect on the butterfly community: extinction and rarefaction affected significantly more often specialist species, which means that generalist species are more and more overrepresented. This ecological drift, i.e. the replacement of specialists by generalists in species assemblages is likely to be a general effect of habitat loss and fragmentation on natural communities.  相似文献   
9.
Site-specific foraging can enhance the ability of generalist predators to provide effective and sustainable levels of pest control in agroecosystems. This can result from increased growth rates, higher population densities, and improved capture frequencies of pests at high prey density microsites. We tested the hypothesis that linyphiid spiders would exhibit microhabitat-specific web-site selection strategies in alfalfa. This was predicted to result in high prey densities at web-sites compared to paired non-web-sites through direct, or indirect, selection of prey-rich habitats. A total of 22,242 potential prey items were collected from mini-sticky traps located at 896 microsites. Web-centered mini-sticky traps on the ground, representative of Erigone autumnalis Emerton (Araneae: Linyphiidae) webs, captured similar numbers of potential prey as paired non-web-centered traps nearby. However, aerial sticky traps at web-sites of Bathyphantes pallidus (Banks) (Araneae: Linyphiidae) contained significantly more Diptera and Empoasca fabae (Harris) (Homoptera: Cicadellidae) than paired non-web-centered sticky-traps. Prey activity-densities also varied between web-sites of E. autumnalis and B. pallidus. Diptera were dominant at aerial microsites of B. pallidus whilst Collembola were abundant on ground-based traps of E. autumnalis. These results suggest that in alfalfa, the pressure for selecting prey-rich web-sites by erigonine spiders is low, but B. pallidus exhibits a selective web-location strategy targeted towards high quality dipteran prey. These sites also captured large numbers of E. fabae, a major pest of alfalfa, thus implicating aerial-based linyphiines as valuable predators in biological control.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号