首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   32篇
  国内免费   7篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   11篇
  2015年   19篇
  2014年   15篇
  2013年   12篇
  2012年   17篇
  2011年   11篇
  2010年   3篇
  2009年   15篇
  2008年   14篇
  2007年   23篇
  2006年   16篇
  2005年   7篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   15篇
  2000年   6篇
  1999年   13篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
1.
2.
Juvenile three-spined stickleback Gasterosteus aculeatus in their nursery pond had a bimodal length distribution after October in their first year of life. A sea-run migration of all individuals belonging to the lower modal group was observed, with a peak in early November. These data suggest that partial migration based on the early status of individual juveniles occurs in the Pacific Ocean form of three-spined stickleback.  相似文献   
3.
The body shape of 1303 adult male three-spined stickleback Gasterosteus aculeatus from 118 populations on Haida Gwaii archipelago off the mid-coast of British Columbia was investigated using discriminant function analysis on partial warp scores generated from 12 homologous landmarks on a digital image of each fish. Results demonstrated geographical differences in adult body shape that could be predicted by both abiotic and biotic factors of the habitat. Populations with derived shape (CV1−), including thick peduncles, posterior and closely spaced dorsal spines, anterior pelvis, small dorsal and anal fins, were found in small, shallow, stained ponds, and populations with less derived shape (CV1+), with small narrow peduncles, anterior and widely spaced dorsal spines, posterior pelvis, large dorsal and anal fins were found in large, deep, clear lakes. This relationship was replicated between geographic regions; divergent mtDNA haplotypes in lowland populations; between predation regimes throughout the archipelago, and in each geographical region and between predation regimes in lowland populations monomorphic for the Euro and North American mtDNA haplotype. There were large-bodied populations with derived shape (CV2−), including small heads and shallow elongate bodies in open water habitats of low productivity, and populations with smaller size and less derived shape (CV2+), with large heads and deeper bodies in higher productivity, structurally complex habitats. This relationship was replicated between geographic regions, and partially between divergent mtDNA haplotypes in lowland populations. Field tests for phenotypic plasticity of body shape suggest that <10% of the total variation in body shape among populations throughout the archipelago can be attributed to plasticity.  相似文献   
4.
Summary The results of genetical studies of osteal plate polymorphism of threespine stickleback Gasterosteus aculeatus reported to date (Munzing 1959; Hagen and Gilbertson 1973; Avise 1976) are discussed and proposed inheritance models are considered. Results of crosses between the morphs of G. aculeatus from the White Sea are presented. An attempt has been made by the author to devise a unifying model for the inheritance of plate morphs within the whole range of G. aculeatus. The role of polymorphism in the microevolutionary processes taking place within this complex species is discussed.  相似文献   
5.
Summary Life history theory predicts that migratory fishes should delay reproduction, be larger at first reproduction, and have higher fecundities than nonmigrants. We tested this hypothesis by comparing life histories of anadromous (estuary) and resident freshwater (upstream) threespine sticklebacks (Gasterosteus aculeatus L.) from the Navarro River, California, USA. Using a split-brood, two-environment breeding design, families from cach population were divided and reared in both freshwater and seawater overwintering environments. In both treatments, the more migratory estuary sticklebacks were larger at first reproduction and had large initial clutch sizes; in the freshwater treatment, the estuary sticklebacks matured later than the upstream fish. Population means varied little across treatments, indicating that the average effects of the different overwintering conditions were slight. The responses of individual families to a given overwintering treatment were highly variable in both populations, as reflected in significant family x treatment effects for all traits. Phenotypic correlations among life history traits were significant and positive for most traits, and were similar in magnitude in both populations. Differences in the relative degree of specialization for migration may in part explain variation in life history between these populations.  相似文献   
6.
Changes in the foraging behaviour due to variation in the body size of the three-spined stickleback Gasterosteus aculeatus were investigated. All sizes of fish had a high probability of attacking prey whenever encountered. The probability of eating the prey increased with the size of the fish, as the larger fish had larger jaws and a greater stomach capacity. Therefore, as fish increased in size there was an increase in the probability of successful prey capture. The level of satiation did not have an effect on the prey handling time, which is contrary to other studies and is probably a result of the large prey sizes. The physical size of the prey meant that the handling times were long regardless of the motivational level of the fish. The larger fish took in more energy and at a faster rate, although the time to reach satiation was similar for all fish sizes. The advantage that large fish appear to have in successfully gaining large prey is negated by their greater metabolic requirement. The changes in feeding performance induced by small increases in body size could have important consequences for intraspecific competition, habitat Use and risk of predation.  相似文献   
7.
Summary 1. During early ontogeny, the serotonergic neurons in the brain stem of the three-spined stickleback shows a temporal and spatial developmental pattern that closely resembles that of amniotes.2. However, in the adult fish, only the midline nuclei of the rostral group (dorsal and median raphe nuclei) and the dorsal lateral tegmental nucleus are consistently serotonin-immunoreactive (5-HTir), whereas the groups of the upper and lower rhombencephalon (raphe pontis, raphe magnus, and raphe pallidus/obscurus nuclei) are variable and, when present, contain relatively small numbers of 5-HTir neurons.3. Using specific antisera against tryptophan 5-hydroxylase and aromaticl-amino acid decarboxylase, we have shown that the lateral B9 group and the groups of the upper and lower rhombencephalon are consistently present in adult sticklebacks. The results are discussed in relation to other known instances of neurotransmitter plasticity or transient neurotransmitter expression in teleost fish.4. While there are several instances of transient expression of neurotransmitter markers by discrete neuronal populations, there is so far no evidence of changes from one neurotransmitter phenotype to another in the brain of teleost fish. However, there are indications of plasticity of expression of catecholamines and indoleamines, and their respective synthesizing enzymes, as reflected in age-dependent changes and variation between individuals of different physiological status.5. As the brain grows continuously in teleost fish, and new neurons are added from proliferative regions, synaptic connections may be expected to undergo remodeling in all brain regions throughout life. Thus, the teleostean brain may be considered a suitable model for experimental studies of different aspects of neural plasticity.  相似文献   
8.
An experiment was designed to study how gut fullness and encounter with 5-mm Asellus aquaticus influenced acceptance or rejection of less profitable 8-mm Asellus . 45-mm sticklebacks were found to always accept 5-mm prey whereas 8-mm prey were accepted with an initial probability of about 0.9. This probability decreased as the gut filled. Fish of differing sizes and sex had similar daily energy intakes per unit body size, however the acceptance of 8-mm prey was related to fish size. Whenever a fish orientated to a prey it was followed by pursuit and manipulation independently of prey size. The decision to accept or reject prey occurred after one manipulation, a criterion that was more variable for the larger prey. For one feeding session per day the total energy intake was almost constant despite the changing combination of prey sizes eaten. The fish ate prey with long handling times if the energetic contents of the stomach had not reached 450 J. Calculations were made of how many of each millimetre prey size group would satisfy the 450 J demand and how long the estimated number would take to handle. This showed that the best option is to consume 5-mm prey if given the choice.  相似文献   
9.
Previous studies have demonstrated selective predation for vertebral traits of larvae in the stickleback Gasterosteus aculeatus. I tested the hypothesis that this selection results from a direct functional advantage to particular vertebral phenotypes by direct measurement of the burst swimming performance of larvae. Within a narrow window of lengths, burst speed did depend on vertebral phenotype. As in the previous predation experiments, performance was related more directly to the ratio of abdominal to caudal vertebrae (VR) than to the total number of vertebrae (VN), and the optimal VR decreased as larval length increased. Changes with length in the vertebral phenotype frequencies of wild larvae provided evidence of selection for VR and for VN in the wild. Larvae with particular VR increased in frequency in the wild at just those lengths when their relative performance was superior in the laboratory. The observed pattern of length-dependent selection for vertebral number provides an explanation for the widespread trends in vertebral number that occur among populations of related fishes.  相似文献   
10.
Variation in the number of vertebrae is widespread in fishes, and is partly genetic in origin. The adaptive significance of this variation was tested by exposing larvae of the threespine stickleback (Gasterosteus aculeatus) to predation by sunfish (Lepomis gibbosus). Two vertebral characters were considered: the total number (VN) and the ratio of abdominal to caudal vertebrae (VR). Predation was selective for both characters, but selection was more directly related to VR than to VN. The direction of selection depended on larval length: as length increased, optimal VR decreased. Total selection for VR was a combination of direct selection and an indirect effect of selection acting on a correlated trait, the ratio of precaudal to caudal length. Direct and indirect selection were in opposing directions at a given larval length. Variation in vertebral number may be maintained in populations partly because the strength of selection is reduced by opposing directions between direct and indirect selection, and between total selection at different larval lengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号