首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   1篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  1997年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1984年   14篇
  1983年   22篇
  1982年   18篇
  1981年   18篇
  1980年   9篇
  1979年   14篇
  1978年   3篇
  1977年   13篇
  1976年   12篇
  1975年   13篇
  1974年   22篇
  1973年   29篇
  1972年   11篇
  1971年   3篇
排序方式: 共有228条查询结果,搜索用时 14 毫秒
1.
Following a survey of a range of varieties of rye, mainly Secale cereale, for reaction to DDT, the mode of action of the pesticide in a susceptible variety was studied. Two sites of interaction of DDT with the photosynthetic electron transport chain were demonstrated. The first site of inhibition was on the oxidizing side of photosystem 2, between the sites of electron donation from diphenylcarbazide at pH 6.0 and pH 8.0 in Tris-washed chloroplasts. The second site of DDT inhibition was in the intermediate electron transport chain, and was demonstrated by using dichlorophenol-indophenol and phenyldiamines as electron donors in chloroplasts where electron flow from photosystem 2 was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The sites are distinct from those characteristic of herbicides which affect photosynthetic electron flow.  相似文献   
2.
Rita Khanna  S. Rajan  H.S. Gutowsky 《BBA》1983,725(1):10-18
Measurements were made of the water proton relaxation rate (T?12 = R2), electron spin resonance (ESR) six-line signal of ‘free’ Mn2+, and O2-evolution activity in thylakoid membranes from pea leaves. The main results are: (1) Aging of thylakoids at 35°C causes a parallel decrease in O2-evolution activity, in R2 and in the content of bound Mn, suggesting that R2 may be related to the loosely bound Mn involved in O2 evolution. (2) Treatment of thylakoids with tetraphenylboron (TPB) at [TPB] > 2 mM produces a 2-fold increase in R2, without release of Mn2+. The titration curve exhibits three sharp end points. The first end point occurs at a [TPB][chlorophyll] of 1.25, at which the O2 evolution is completely inhibited. (3) Treatment of thylakoids with NH2OH also increases R2 by nearly 2-fold, either by the reduction of the higher oxidation states of Mn to Mn2+ and / or by exposing the Mn to solvent protons. Also, progressive release of bound Mn occurs at [NH2OH] ≥ 1 mM as shown by an increase increase in the Mn2+ ESR signal and a decrease in R2. (4) Addition of H2O2 (0.1–1.0%) to thylakoids causes an enhancement of R2 similar to that by NH2OH, but without the release of Mn2+. (5) Heat treatment of thylakoids at 40–50°C releases Mn2+ and increases R2. Conversely, pH values of 7 to 4 release Mn2+ without changing R2 while pH values of 7–9 increase R2 without releasing Mn2+. Thus, both high and low pH values as well as the heat treatment cause structural changes enhancing the relaxivity of the bound Mn or of other paramagnetic species.  相似文献   
3.
Ta-Yan Leong  Jan M. Anderson 《BBA》1983,723(3):391-399
The hypothesis that chloroplasts having different light-saturated rates of photosynthesis will have different proportions of the intrinsic thylakoid complexes engaged in light-harvesting and electron transport (Anderson, J.M. (1982) Mol. Cell. Biochem. 46, 161–172) has been tested. Peas were grown in light regimes which varied in light intensity, quality and time of irradiance, and ranged from sunlight through red to blue-enriched light of very low radiation. The electron-transport capacity at saturating light of Photosystem I and Photosystem II of chloroplasts isolated from light-adapted peas was 2-fold and 5–6-fold lower, respectively, in the lowest radiation compared to sunlight. There was a marked increase in the amount of total chlorophyll associated with the main chlorophyll ab-proteins (LHCP1, LHCP2 and LHCP3) and a 2-fold decrease in the core reaction centre complex of Photosystem II (CP a) as the radiation decreased; the LHCP1–3CP a ratio changed from 3.5 to 9.0. The amount of chlorophyll associated with Photosystem I varied from 34% in sunlight to 27% in the lowest radiation, but the antenna size of Photosystem I was not markedly different; there was a 2-fold decrease in the amount of cytochrome f on a chlorophyll basis, which partly accounted for the decreased electron-transport capacity of Photosystem I. Since the increases or decreases in the levels of each of the components correlated with decreasing radiation, it is clear that the light-adaptation of both light-harvesting and electron-transport components is indeed closely co-ordinated.  相似文献   
4.
5.
The polyene antibiotic amphotericin B inhibits photosynthetic electron transfer by Class II maize mesophyll chloroplasts, from water to FeCN, DCIP and diquat but not to plastocyanin. Photosystem 1 activity is also inhibited by amphotericin B, but ferredoxin-NADP reductase activity is not affected. The activity of all the photosynthetic electron transfer systems inhibited by amphotericin B can be restored by the addition of carrier amounts of plastocyanin. The results suggest that amphotericin B inhibits photosynthetic electron transfer by acting only at the plastocyanin site in the chain, and that the primary site of reduction of FeCN and DCIP from water by Class II chloroplasts lies on the reducing side of photosystem 1.  相似文献   
6.
Salil Bose  P. Ramanujam 《BBA》1984,764(1):40-45
The rate of electron transfer through Photosystem I (reduced 2,6-dichlorophenol indophenol (DCIPH2 → methylviologen) in a low-salt thylakoid suspension is inhibited by Mg2+ both under light-limited and the light-saturated conditions, the magnitude of inhibition being the same. The 2,6-dichlorophenol indophenol (DCIP) concentration dependence of the light-saturated rate in the presence and in the absence of Mg2+ shows that the overall rate constant of the photoreaction is not altered by Mg2+. With N,N,N′,N′-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethylphenylenediamine as electron donor only the light-limited rate, not the light-saturated rate, is inhibited by Mg2+ and the magnitude of inhibition is the same as with DCIP as donor. The results are interpreted in terms of heterogeneous Photosystem I, consisting of two types, PS I-A and PS I-B, where PS I-A is involved in cation-regulation of excitation energy distribution and becomes unavailable for DCIPH2 → methyl viologen photoelectron transfer in the presence of Mg2+.  相似文献   
7.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   
8.
9.
A method is reported for the in situ modification of the lipids of isolated spinach chloroplast membranes. The technique is based on a direct hydrogenation of the lipid double bonds in the presence of the catalyst, chlorotris(triphenylphosphine)rhodium (I). The pattern of hydrogenation achieved suggests that the catalyst distributes amongst all of the membranes. The polyunsaturated lipids within the membranes are hydrogenated at a faster rate and at an earlier stage than are the monoenoic lipids.Whilst addition of the catalyst to the chloroplast causes an initial 10–20% decrease in Hill activity, saturation of up to 40% of the double bonds present can be accomplished without causing further significant alterations in photosynthetic electron transport processes or marked morphological changes of the chloroplast structure as observed in the electron microscope.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号