首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
  国内免费   1篇
  2018年   1篇
  2015年   2篇
  2014年   7篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有56条查询结果,搜索用时 62 毫秒
1.
Concentrated solutions of calf alpha-crystallin (up to 45 g/l) and gamma-crystallin (up to 67 g/l) were subjected to frontal exclusion chromatography at pH 7.3, ionic strength 0.17 and 20 degrees C. The experimental concentration dependence of the weight-average partition coefficient was compared with theoretical expressions, which include considerations of thermodynamic non-ideality effects, for the concentration dependence of a single solute and of a solute undergoing reversible self-association. Two types of association pattern were examined, discrete dimerization and indefinite self-association. The partition chromatography results are consistent with an indefinite self-association of gamma-crystallin, governed by an isodesmic association constant of 6.7 X 10(-3) l/g. alpha-Crystallin appears to self-associate either very weakly, with a maximal association constant of 0.9 X 10(-3) l/g, or not at all; the distinction depends on the assessment of the non-ideality coefficients. The consequences of excluded volume effects on these self-association equilibria at high total protein concentration are discussed. Mixtures of alpha-crystallin and gamma-crystallin were analyzed by frontal exclusion chromatography (up to 14 g/l) and sedimentation velocity (up to 115 g/l): no interaction was observed.  相似文献   
2.
The present study is a biochemical characterization of the photophore lenses of the midshipman fish, Porichthys notatus, a species that bears 800 photophores distributed over the body surface. The biochemical properties of the photophore lenses were compared with those of the eye lens with which they share a similar developmental origin and analogous function. To achieve a high refractive index, the vertebrate eye lens has a relatively high concentration of structural proteins (20–50%, depending on species) and a simple protein composition, that is, relatively few proteins are synthesized in comparison to other tissues. Similarly, the photophore lenses of P. notatus had a relatively high protein concentration (average = 29%, n = 5) and approximately 60% of the total soluble protein was represented by two subunit species of 33 kD and 35 kD on denaturing polyacrylamide gels. The structural proteins of the eye lens are of two principle types: 1) and polypeptides which belong to vertebrate lens-specific crystallin families, and, 2) enzymes recruited into the lens which take on the function of structural proteins. Here, we report that the two major photophore lens subunits of 33 kD and 35 kD are biochemically similar to each other, but are clearly distinct from any of the previously characterized crystallins. Therefore, we propose that photophore lenses appear to recruit a novel protein.  相似文献   
3.
Our previous studies have shown that the S-crystallins of cephalopod (Ommastrephes sloani pacificus) eye lenses comprise a family of at least ten members which are evolutionarily related to glutathione S-transferase (GST, EC 2.5.1.18). Here we show by cDNA cloning that there are at least 24 different S-crystallins that are 46–99% identical to each other by amino acid sequence in the squid Loligo opalescens. In each species, all but one S-crystallin (SL11 in O. pacificus and Lops4 in L. opalescens) examined has an inserted central peptide of variable length and sequence. cDNA expression studies conducted in Escherichia coli showed that squid GST (which is expressed little in the lens) has very high enzymatic activity using 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate; by contrast, SL20-1 of O. pacificus and Lops 12 of L. opalescens (which are encoded by abundant lens mRNAs) have no GST activity. Interestingly, SL11 and Lops4 have some enzymatic activity with the CDNB substrate. Site-specific mutations at Y7 or W38, both residues essential for activity of vertebrate GSTs, or insertion of the central peptide present in the inactive SL20-1, reduced the specific activity of squid GST by 30- to 100-fold. These data indicate that the S-crystallins consist of a family of enzymatically inactive proteins (when using CDNB as a substrate) which is considerably larger than previously believed and that GST activity was lost by gradual drift in sequence as well as by insertion of an extra peptide by exon shuffling. The results are also consistent with the idea that SL11 and Lops4 are orthologous crystallins representing the first descendants of the ancestral GST gene in the pathway which gave rise to the extensive S-crystallin family of lens proteins. Correspondence to: S.I. Tomarev  相似文献   
4.
The lens protein, alpha-crystallin, is a molecular chaperone that prevents the thermal aggregation of other proteins. The C-terminal domain of this protein (homologous to domains present in small heat-shock proteins) is implicated in chaperone function, although the domain itself has been reported to show no chaperone activity. Here, we show that the domain can be excised out of the intact alphaB polypeptide and recovered directly in pure form through the transfer of CNBr digests of whole lens homogenates into urea-containing buffer, followed by dialysis-based refolding of digests under acidic conditions and a single gel-filtration purification step. The folded (beta sheet) domain thus obtained is found to be (a) predominantly trimeric, and to display (b) significant surface hydrophobicity, (c) a marked tendency to undergo degradation, and (d) a tendency to aggregate upon heating, and on exposure to UV light. Thus, the twin 'chaperone' features of multimericity and surface hydrophobicity are clearly seen to be insufficient for this domain to function as a chaperone. Since alpha-crystallin interacts with its substrates through hydrophobic interactions, the hydrophobicity of the excised domain indicates that separation of domains may regulate function; at the same time, the fact is also highlighted that surface hydrophobicity is a liability in a chaperone since heating strengthens hydrophobic interactions and can potentially promote self-aggregation. Thus, it would appear that the role of the N-terminal domain in alpha-crystallin is to facilitate the creation of a porous, hollow structural framework of >/=24 subunits in which solubility is effected through increase in the ratio of exposed surface area to buried volume. Trimers of interacting C-terminal domains anchored to this superstructure, and positioned within its interior, might allow hydrophobic surfaces to remain accessible to substrates without compromising solubility.  相似文献   
5.

Background

The cortex and nucleus of eye lenses are differentiated by both crystallin protein concentration and relative distribution of three major crystallins (α, β, and γ). Here, we explore the effects of composition and concentration of crystallins on the microstructure of the intact bovine lens (37 °C) along with several lenses from Antarctic fish (− 2 °C) and subtropical bigeye tuna (18 °C).

Methods

Our studies are based on small-angle X-ray scattering (SAXS) investigations of the intact lens slices where we study the effect of crystallin composition and concentration on microstructure.

Results

We are able to distinguish the nuclear and cortical regions by the development of a characteristic peak in the intensity of scattered X-rays. For both the bovine and fish lenses, the peak corresponds to that expected for dense suspensions of α-crystallins.

Conclusions

The absence of the scattering peak in the nucleus indicates that there is no characteristic wavelength for density fluctuations in the nucleus although there is liquid-like order in the packing of the different crystallins. The loss in peak is due to increased polydispersity in the sizes of the crystallins and due to the packing of the smaller γ-crystallins in the void space of α-crystallins.

General significance

Our results provide an understanding for the low turbidity of the eye lens that is a mixture of different proteins. This will inform design of optically transparent suspensions that can be used in a number of applications (e.g., artificial liquid lenses) or to better understand human diseases pathologies such as cataract.  相似文献   
6.
Biophysical measurements indicative of protein stability and function were performed on crude extracts from liver, muscle, and lens of a genetically heterogeneous mouse population. Genetic information was used to search for quantitative trait loci (QTL) that influenced the biophysical traits, with emphasis on phenotypes that previously have been shown to be altered in aged animals. Spectroscopic and enzymatic assays of crude liver and muscle tissue extracts from approximately 600 18-month-old mice, the progeny of (BALB/cJxC57BL/6J)F1 females and (C3H/HeJxDBA/2J)F1 males, were used to measure the susceptibility of a ubiquitous glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), to thermal denaturation. The rate constant for thermal inactivation of GAPDH correlated with markers on chromosome 5 (D5Mit79 and D5Mit251) for muscle lysates and chromosome 15 (D15Mit63 and D15Mit100) for liver tissue. The degree of variability of inactivation rate constants, a measure of the heterogeneity of muscle GAPDH in tissue extracts, was also associated with markers on chromosome 5 (D5Mit79 and D5Mit205). In addition, spectroscopic characteristics of extracted eye lens proteins were evaluated for their susceptibility to photooxidative stress. Absorbance and fluorescence emission characteristics of the lens proteins were mapped to QTL on chromosomes 5 and 15 (D5Mit25 and D15Mit171) while the degree of heterogeneity in photochemical oxidation kinetics was associated with a marker on the chromosome 8 (D8Mit42). Recent work has shown that GAPDH possesses a number of non-glycolytic functions including DNA/RNA binding and regulation of protein expression. Tissue specific differences in GAPDH stability may have significant consequences to these alternate functions during aging.  相似文献   
7.
Cataracts are caused by clouding of the eye lens and may lead to partial or total loss of vision. The mechanism of cataract development, however, is not well understood. It is thought that abnormal aggregates of lens proteins form with age, causing loss of lens clarity and development of the cataract. Lens proteins are composed of soluble α-, β-, and γ-crystallins, and as long lived proteins, they undergo post-translational modifications including isomerization, deamidation, and oxidation, which induce insolubilization, aggregation, and loss of function that may lead to cataracts. Therefore, analysis of post-translational modifications of individual amino acid residues in proteins is important. However, detection of the optical isomers of amino acids formed in these proteins is difficult because optical resolution is only achieved using complex methodology. In this study, we describe a new method for the analysis of isomerization of individual Asp residues in proteins using LC-MS and the corresponding synthetic peptides containing the Asp isomers. This makes it possible to analyze isomers of Asp residues in proteins precisely and quickly. We demonstrate that Asp-58, -76, -84, and -151 of αA-crystallin and Asp-62 and -96 of αB-crystallin are highly converted to lβ-, dβ-, and dα-isomers. The amount of isomerization of Asp is greater in the insoluble fraction at all Asp sites in lens proteins, therefore indicating that isomerization of these Asp residues affects the higher order structure of the proteins and contributes to the increase in aggregation, insolubilization, and disruption of function of proteins in the lens, leading to the cataract.  相似文献   
8.
αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high expression of αA and αB in the lens and their co-fractionation from lens extracts as one multimeric entity, α-crystallin. To understand the biological function(s) of each of these two proteins, it is important to investigate the biological basis of this perceived dichotomy; in this report, we address the question whether αA and αB exist as independent proteins in the ocular lens. Discontinuous sucrose density gradient fractionation and immunoconfocal localization reveal that in early developing rat lens αA is a membrane-associated small heat shock protein similar to αB but with remarkable differences. Employing an established protocol, we demonstrate that αB predominantly sediments with rough endoplasmic reticulum, whereas αA fractionates with smooth membranes. These biochemical observations were corroborated with immunogold labeling and transmission electron microscopy. Importantly, in the rat heart also, which does not contain αA, αB fractionates with rough endoplasmic reticulum, suggesting that αA has no influence on the distribution of αB. These data demonstrate presence of αA and αB in two separate subcellular membrane compartments, pointing to their independent existence in the developing ocular lens.  相似文献   
9.
Metamorphosis, a critical stage in the development of toads and frogs, involves rapid levels of morphological change. In the current study, we have used microarray analysis to identify shifts in gene expression between tadpole and toadlet stages of the cane toad, Bufo (Chaunus) marinus. Here, we report on nine genes that show the greatest induction during metamorphosis; the gut-associated gastrokine and trefoil factor, blood components haemoglobins alpha/beta, apolipoprotein and serum albumin, a nasal gene olfactomedin, a lens gene gamma-crystallin, and a novel gene with low homology to frog harderin. We present both temporal and spatial expression patterns of these genes identified in developing and adult cane toads. This study extends our knowledge of the molecular basis of toad metamorphosis, and not only offers insights to the genes induced during the general remodelling that occurs but also reveals possible targets for control and manipulation of amphibian pest species, for example, the cane toad in Australia.  相似文献   
10.
Eye development is a complex process that involves the formation of the retina and the lens, collectively called the eyeball, as well as the formation of auxiliary eye structures such as the eyelid, lacrimal gland, cornea and conjunctiva. The developmental requirements for the formation of each individual structure are only partially understood. We have shown previously that the homeobox-containing gene Rx is a key component in eye formation, as retinal structures do not develop and retina-specific gene expression is not observed in Rx-deficient mice. In addition, Rx−/− embryos do not develop any lens structure, despite the fact that Rx is not expressed in the lens. This demonstrates that during normal mammalian development, retina-specific gene expression is necessary for lens formation. In this paper we show that lens formation can be restored in Rx-deficient embryos experimentally, by the elimination of β-catenin expression in the head surface ectoderm. This suggests that β-catenin is involved in lens specification either through Wnt signaling or through its function in cell adhesion. In contrast to lens formation, we demonstrate that the development of auxiliary eye structures does not depend on retina-specific gene expression or retinal morphogenesis. These results point to the existence of two separate developmental processes involved in the formation of the eye and its associated structures. One involved in the formation of the eyeball and the second involved in the formation of the auxiliary eye structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号