首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
Metabolism at the cytosol–mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.  相似文献   
2.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   
3.
Abstract: Metabolism of [U-13C5]glutamine was studied in primary cultures of cerebral cortical astrocytes in the presence or absence of extracellular glutamate. Perchloric acid extracts of the cells as well as redissolved lyophilized media were subjected to nuclear magnetic resonance and mass spectrometry to identify 13C-labeled metabolites. Label from glutamine was found in glutamate and to a lesser extent in lactate and alanine. In the presence of unlabeled glutamate, label was also observed in aspartate. It could be clearly demonstrated that some [U-13C5]glutamine is metabolized through the tricarboxylic acid cycle, although to a much smaller extent than previously shown for [U-13C5]glutamate. Lactate formation from tricarboxylic acid cycle intermediates has previously been demonstrated. It has, however, not been demonstrated that pyruvate, formed from glutamate or glutamine, may reenter the tricarboxylic acid cycle after conversion to acetyl-CoA. The present work demonstrates that this pathway is active, because [4,5-13C2]glutamate was observed in astrocytes incubated with [U-13C5]glutamine in the additional presence of unlabeled glutamate. Furthermore, using mass spectrometry, mono-labeled alanine, glutamate, and glutamine were detected. This isotopomer could be derived via the action of pyruvate carboxylase using 13CO2 produced within the mitochondria or from labeled intermediates that had stayed in the tricarboxylic acid cycle for more than one turn.  相似文献   
4.
Virtually all of the polyphosphate (PP) present in yeast protoplasts can be recovered in a crude particulate fraction if polybase-induced lysis is used for disrupting the protoplasts. This fraction contains most of the vacuoles, mitochondria and nuclei. Upon the purification of vacuoles the PP is enriched to the same extent as are the vacuolar markers. The amount of PP per vacuole is comparable to the amount of PP per protoplast.The possibility that PP is located in the cell wall is also considered. In the course of the incubation necessary for preparing protoplasts, 20% of the cellular PP is broken down. As this loss of PP occurs to the same extent in the absence of cell wall degrading enzymes, it is inferred that internal PP is metabolically degraded, no PP being located in the cell walls.It is concluded that in Saccharomyces cerevisiae most if not all of the PP is located in the vacuoles, at least under the growth conditions used.Non-Standard Abbreviations PIPES piperazine-N,N-bis-2-ethanolsulfonic acid - DEAE-dextran diethylaminoethyl-dextran  相似文献   
5.
The transport of purine derivatives into vacuoles isolated from Saccharomyces cerevisiae was studied. Vacuoles which conserved their ability to take up purine compounds were prepared by a modification of the method of polybase-induced lysis of spheroplasts.Guanosine > inosine = hypoxanthine > adenosine were taken up with decreasing initial velocities, respectively; adenine was not transported.Guanosine and adenosine transporting systems were saturable, with apparent Km values 0.63 mM and 0.15 mM respectively, while uptake rates of inosine and of hypoxanthine were linear functions of their concentrations.Adenosine transport in vacuoles appeared strongly dependent on the growth phase of the cell culture.The system transporting adenosine was further characterized by its pH dependency optimum of 7.1 and its sensitivity to inhibition by S-adenosyl-l-methionine.In the absence of adenosine in the external medium, [14C]adenosine did not flow out from preloaded vacuoles. However, in the presence of external adenosine, a very rapid efflux of radioactivity was observed, indicating an exchange mechanism for the observed adenosine transport in the vacuoles.In isolated vacuoles the only purine derivative accumulated was found to be S-adenosyl-l-homocysteine.  相似文献   
6.
Zusammenfassung In der Frucht vonPoncirus trifoliata liegen in der Außenschale Drüsenzellkomplexe, die ein monoterpenreiches ätherisches Öl mit geringem Anteil an Sesquiterpenen und O-haltigen Substanzen produzieren. Ähnlich aussehende Exkretzellkomplexe aus den Saftschläuchen enthalten hauptsächlich Sesquiterpenkohlenwasserstoffe (STKW) und O-haltige Komponenten und sehr wenig Monoterpenkohlenwasserstoffe (MTKW). Im Schalenöl konnten nach gaschromatographischer Trennung mit Hilfe der Massenspektrometrie 19 Komponenten identifiziert werden, im Saftschlauchöl 25.Elektronenmikroskopische Aufnahmen der jüngsten Drüsenzellen beider Drüsenkomplexe lassen erkennen, daß beide Terpenklassen wahrscheinlich hauptsächlich bzw. ausschließlich plastidär entstehen.Exogen angebotenes14CO2 wird zunächst überwiegend in die MTKW eingebaut, erst später nimmt die Markierung der STKW und O-haltigen Komponenten stark zu. Über den Ferntransportweg angebotenes14C-Leucin führt anfangs zu einer starken Markierung der STKW und O-haltigen Komponenten, erst später verschiebt sich der Einbau etwas mehr in Richtung MTKW. Als Hauptursache für den differenten Einbau wird das Vorhandensein zweier Typen von Drüsenzellkomplexen mit unterschiedlichen Syntheseleistungen angesehen.Die aus dem14CO2 in der Außenrinde gebildeten Assimilate werden zuerst in das MTKW-reiche Öl der Schalenexkretbehälter eingebaut. Die überwiegend STKW erzeugenden Saftschlauchbehälter werden erst später beliefert. Beim Leucinangebot über die Fruchtstiele scheint es gerade umgekehrt zu verlaufen. Die aufeinanderfolgenden Maxima der Ölproduktion in den beiden Drüsenzellkomplex-Typen und die Änderung des Komponentenspektrums ihres ätherischen Öls im Verlauf der Vegetationsperiode tragen ebenfalls zu einem je nach Jahreszeit unterschiedlichen Einbau in die MTKW und STKW bei.
Compartmentation of mono- and sesqui-terpene biosynthesis of the essential oil inPoncirus trifoliata
Summary The fruit ofPoncirus trifoliata shows glandular cell complexes in the exocarp, which produce a volatile oil rich in monoterpenes but poor in sesquiterpenes and oxigenated compounds. The juice vesicles of the endocarp possess similar cell complexes mainly containing sesquiterpenes and oxigenated compounds, whereas monoterpenes only occur in small amounts. By the use of combined gas chromatography-mass spectrometry 19 components of the rind oil and 15 compounds of the endocarp oil could be identified.As demonstrated by electron microscopy the terpenes most probably are synthesized predominantly, if not exclusively in plastids. As shown by gasradiochromatography radioactive precursors (14CO2 and14C-leucine) are incorporated into mono- and sesqui-terpenes to a different extent.This is due to two gland types producing essential oils of different composition with regard to their mono- and sesqui-terpene percentage. In fruit development the exocarp glands differentiate earlier than the endocarp glands do. The activity of exogenously applied14CO2 first reaches the peripheral glands and later on appears in the interior glands. Depending upon the growth season, labelled leucine transported by the conducting tissues from lower plant parts leads to a high specific activity of the sesqui-terpenes and oxigenated compounds. It could be argued that in this instance the glands of the pulp are better provided with precursors than the exocarp glands. The successive maxima of essential oil production in both glandular complexes, and the changes in the concentration of individual oil constituents during the ontogeny of the fruit also contribute to different incorporation ratios of radioactive precursors into mono- and sesqui-terpenes.
  相似文献   
7.
This paper describes the transfer of tritium from [2-3H]xylitol or (1R)-[1-3H]ethanol into lactate in cells from fed rats either untreated or triiodothyronine-treated. The labelling pattern of lactate during the metabolism of [2-3H]xylitol or (1R)-[1-3H]ethanol follows the equation L = K(1?e?tτ) (μmol tritium/μmol lactate). The yield in lactate together with the minimum value of the total flux of reducing equivalents are used to estimate the specific radioactivity of NADH. We have calculated the lactate dehydrogenase-catalysed oxidation rate of NADH from the experimental values of lactate labelling and the specific radioactivity of NADH. We found the calculated flux of reducing equivalents from NADH to pyruvate to be of the same order of magnitude whether labelled ethanol or labelled xylitol was metabolized. We found the flux to be only a few percent of the maximal activity of lactate dehydrogenase. The results obtained suggest that the cytoplasm can be regarded as one compartment, containing a single pool of NAD(H).  相似文献   
8.
Ma JF  Ueno D  Zhao FJ  McGrath SP 《Planta》2005,220(5):731-736
Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65–70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves. To examine the subcellular localisation of Cd and Zn in mesophyll tissues, protoplasts and vacuoles were isolated from plants exposed to 50 M Cd and Zn hydroponically. Pure protoplasts and vacuoles were obtained based on light-microscopic observation and the activities of marker enzymes of cytosol and vacuoles. Of the total Cd and Zn in the mesophyll tissues, 91% and 77%, respectively, were present in the protoplast, and all Cd and 91% Zn in the protoplast were localised in the vacuoles. Furthermore, about 70% and 86% of total Cd and Zn, respectively, in the leaves were extracted in the cell sap, suggesting that most Cd and Zn in the leaves is present in soluble form. These results indicate that internal detoxification of Cd and Zn in Thlaspi caerulescens leaves is achieved by vacuolar compartmentalisation.  相似文献   
9.
Three differentially compartmentalized isozymes of isocitrate dehydrogenase (mitochondrial IDP1, cytosolic IDP2, and peroxisomal IDP3) in the yeast Saccharomyces cerevisiae catalyze the NADP(+)-dependent oxidative decarboxylation of isocitrate to form alpha-ketoglutarate. These enzymes are highly homologous but exhibit some significant differences in physical and kinetic properties. To examine the impact of these differences on physiological function, we exchanged promoters and altered organellar targeting information to obtain expression of IDP2 and IDP3 in mitochondria and of IDP1 and IDP3 in the cytosol. Physiological function was assessed as complementation by mislocalized isozymes of defined growth defects of isocitrate dehydrogenase mutant strains. These studies revealed that the IDP isozymes are functionally interchangeable for glutamate synthesis, although mitochondrial localization has a positive impact on this function during fermentative growth. However, IDP2, whether located in mitochondria or in the cytosol, provided the highest level of defense against endogenous or exogenous oxidative stress.  相似文献   
10.
Nyalwidhe J  Lingelbach K 《Proteomics》2006,6(5):1563-1573
After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole (PV) which forms an interface between the host cell cytosol and the parasite surface. This vacuole protects the parasite from potentially harmful substances, but allows access of essential nutrients to the parasite. Furthermore, the vacuole acts as a transit compartment for parasite proteins en route to the host cell cytoplasm. Recently we developed a strategy to biotin label soluble proteins of the PV. Here, we have paired this strategy with a high-throughput MALDI-TOF-MS analysis to identify 27 vacuolar proteins. These proteins fall into the following main classes: chaperones, proteases, and metabolic enzymes, consistent with the expected functions of the vacuole. These proteins are likely to be involved in several processes including nutrient acquisition from the host cytosol, protein sorting within the vacuole, and release of parasites at the end of the intraerythrocytic cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号