首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20109篇
  免费   1535篇
  国内免费   921篇
  2024年   47篇
  2023年   345篇
  2022年   388篇
  2021年   650篇
  2020年   722篇
  2019年   816篇
  2018年   819篇
  2017年   627篇
  2016年   601篇
  2015年   755篇
  2014年   1085篇
  2013年   1576篇
  2012年   671篇
  2011年   972篇
  2010年   579篇
  2009年   847篇
  2008年   831篇
  2007年   970篇
  2006年   820篇
  2005年   753篇
  2004年   611篇
  2003年   633篇
  2002年   538篇
  2001年   374篇
  2000年   342篇
  1999年   347篇
  1998年   355篇
  1997年   331篇
  1996年   296篇
  1995年   311篇
  1994年   302篇
  1993年   330篇
  1992年   318篇
  1991年   252篇
  1990年   229篇
  1989年   239篇
  1988年   180篇
  1987年   189篇
  1986年   162篇
  1985年   209篇
  1984年   218篇
  1983年   140篇
  1982年   161篇
  1981年   149篇
  1980年   100篇
  1979年   104篇
  1978年   64篇
  1977年   58篇
  1976年   50篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
1.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
2.
3.
Myoglobin (Mb) is the classic vertebrate oxygen-binding protein present in aerobic striated muscles. It functions principally in oxygen delivery and provides muscle with its characteristic red colour. Members of the Antarctic icefish family (Channichthyidae) are widely thought to be extraordinary for lacking cardiac Mb expression, a fact that has been attributed to their low metabolic rate and unusual evolutionary history. Here, we report that cardiac Mb deficit, associated with pale heart colour, has evolved repeatedly during teleost evolution. This trait affects both gill- and air-breathing species from temperate to tropical habitats across a full range of salinities. Cardiac Mb deficit results from total pseudogenization in three-spined stickleback and is associated with a massive reduction in mRNA level in two species that evidently retain functional Mb. The results suggest that near or complete absence of Mb-assisted oxygen delivery to heart muscle is a common facet of teleost biodiversity, even affecting lineages with notable oxygen demands. We suggest that Mb deficit may affect how different teleost species deal with increased tissue oxygen demands arising under climate change.  相似文献   
4.
THe incorporation of [3H]glycine into acid-insoluble protein and of [3H]acetate into glysoaminoglycans by cultured chick chondrocytes was stimulated by the addition of L-glutamine to the incubation medium. The effect of exogenous L-glutamine on protein synthesis was studied further by examining changes in the sedimentation patterns on sucrose gardients of ribosomes isolated from chondrocytes incubated in presence and absence of L-glutamine. It was found that the absence of L-glutamine caused a disaggregation of poly-ribosomes that was reversed by the addition of this amino acid to the culture medium. No detectable glutamine synthetase activity could be measured in avian articular cartilage. These results indicate that L-glutamine is an essential amino acid for cartilage in that an extracellular supply of this amino acid is required for the maintenance of protein and glycosaminoglycan synthesis. A dependence on L-glutamine was also demonstrated for other avain connective tissues.  相似文献   
5.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   
6.
7.
8.
Daily ingestion of iodide alone is not adequate to sustain production of the thyroid hormones, tri- and tetraiodothyronine. Proper maintenance of iodide in vivo also requires its active transport into the thyroid and its salvage from mono- and diiodotyrosine that are formed in excess during hormone biosynthesis. The enzyme iodotyrosine deiodinase responsible for this salvage is unusual in its ability to catalyze a reductive dehalogenation reaction dependent on a flavin cofactor, FMN. Initial characterization of this enzyme was limited by its membrane association, difficult purification and poor stability. The deiodinase became amenable to detailed analysis only after identification and heterologous expression of its gene. Site-directed mutagenesis recently demonstrated that cysteine residues are not necessary for enzymatic activity in contrast to precedence set by other reductive dehalogenases. Truncation of the N-terminal membrane anchor of the deiodinase has provided a soluble and stable source of enzyme sufficient for crystallographic studies. The structure of an enzyme·substrate co-crystal has become invaluable for understanding the origins of substrate selectivity and the mutations causing thyroid disease in humans.  相似文献   
9.
《Developmental cell》2021,56(16):2329-2347.e6
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
10.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium), a widely used non-selective herbicide, is a redox cycling agent with adverse effects on dopamine systems. Epidemiological data have shown that exposure to paraquat is one of the several risk factors for Parkinson's disease. We have already shown that cyclo(His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the thyrotropin releasing hormone, has a cytoprotective effect through a mechanism involving Nrf2 activation that decreases production of reactive oxygen species and increases glutathione synthesis. Using primary neuronal cultures and PC12 cells as targets of paraquat neurotoxicity, we addressed whether and how cyclo(His-Pro) causes cellular protective response against paraquat-mediated cell death. We found that cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion by up-regulating Nrf2 gene expression, triggering its nuclear accumulation and activating the expression of heme oxygenase1. These protective effects were abolished by RNA interference-mediated Nrf2 knock down whereas were unaffected by RNA interference-mediated Keap1 knock down. Inhibition of heme oxygenase activity decreased cyclo(His-Pro)-induced neuroprotection. These results suggest that cyclo(His-Pro), acting as a selective activator of the brain modulable Nrf2 pathway, may be a promising candidate as neuroprotective agent that act through induction of phase II genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号