首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 312 毫秒
1
1.
2.
Yagame T  Yamato M  Suzuki A  Iwase K 《Mycorrhiza》2008,18(2):97-101
Mycorrhizal fungi were isolated from the nonphotosynthetic orchid Chamaegastrodia sikokiana and identified as members of Ceratobasidiaceae by phylogenetic analysis of the internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid. The ITS sequences were similar among geographically separated samples obtained from Mt. Kiyosumi in Chiba Prefecture and Mt. Yokokura in Kochi Prefecture. One of the isolated fungi, KI1-2, formed ectomycorrhiza on seedlings of Abies firma in pot culture, suggesting that tripartite symbiosis exists among C. sikokiana, mycorrhizal fungi, and A. firma in nature, and carbon compounds are supplied from A. firma to C. sikokiana through the hyphae of the mycorrhizal fungi. To our knowledge, this is the second study to suggest the involvement of Ceratobasidiaceae fungi in tripartite symbiosis with achlorophyllous orchids and photosynthetic host plants.  相似文献   
3.
Host breadth is often assumed to have no evolutionary significance in broad interactions because of the lack of cophylogenetic patterns between interacting species. Nonetheless, the breadth and suite of hosts utilized by one species may have adaptive value, particularly if it underlies a common ecological niche among hosts. Here, we present a preliminary assessment of the evolution of mycorrhizal specificity in 12 closely related orchid species (genera Goodyera and Hetaeria) using DNA‐based methods. We mapped specificity onto a plant phylogeny that we estimated to infer the evolutionary history of the mycorrhiza from the plant perspective, and hypothesized that phylogeny would explain a significant portion of the variance in specificity of plants on their host fungi. Sampled plants overwhelmingly associated with genus Ceratobasidium, but also occasionally with some ascomycetes. Ancestral mycorrhizal specificity was narrow in the orchids, and broadened rarely as Goodyera speciated. Statistical tests of phylogenetic inertia suggested some support for specificity varying with increasing phylogenetic distance, though only when the phylogenetic distance between suites of fungi interacting with each plant taxon were taken into account. These patterns suggest a role for phylogenetic conservatism in maintaining suits of fungal hosts among plants. We stress the evolutionary importance of host breadth in these organisms, and suggest that even generalists are likely to be constrained evolutionarily to maintaining associations with their symbionts.  相似文献   
4.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   
5.
Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polymerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. californicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi in roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.  相似文献   
6.
Knowledge of fungal root-associates is essential for effective conservation of tropical epiphytic orchids. We investigated the diversity of root-associated fungi of Cyrtochilum myanthum, Scaphyglottis punctulata and Stelis superbiens from a tropical mountain rainforest in southern Ecuador, using a culture dependent approach. We identified 115 fungal isolates, corresponding to 49 fungal OTUs, based on sequences of the nrDNA ITS and partial 28S region. Members of Ascomycota were unambiguously dominant (37 OTUs), including Trichoderma sp. as the most frequent taxon. Members of Basidiomycota (Agaricales and Polyporales) and Mucoromycota (Umbelopsidales and Mortierellales) were also identified. Four potential mycorrhizal OTUs of Tulasnellaceae and Ceratobasidiaceae were isolated from C. myanthum and S. superbiens. Fungal community composition was examined using Sørensen and Jaccard indices of similarity. Alfa diversity was significantly different between C. myanthum and S. superbiens. No difference in beta diversity of the fungal communities between the 3 orchid species and the collecting sites was detected. The study revealed a high diversity of fungi associated with orchid roots. Our results contribute to a better understanding of specific relationships between epiphytic orchids and their root-associated fungi.  相似文献   
7.
Partially mycoheterotrophic plant species obtain organic carbon, via both photosynthesis and mycorrhizal symbiosis. In this study, we investigated the mycorrhizal fungi association and nutritional mode of Cheirostylis liukiuensis, which is suspected to be a partial mycoheterotrophic plant, due to its characteristic reduced underground organs, low-light growth environment, and some fully mycoheterotrophic species in the phylogenetically related genera. Molecular analysis of the dominant mycobiont and stable isotope analysis suggested that C. liukiuensis is a partial mycoheterotrophic plant predominantly associate with non-ectomycorrhizal Ceratobasidiaceae fungi. As examples of partial mycoheterotrophic orchids exploiting non-ectomycorrhizal rhizoctonia are still limited, this study provides valuable information on the nutritional modes of green orchids.  相似文献   
8.
Ypsilonidium bananisporum sp. nov. belonging to Ceratobasidiales is described and illustrated. This fungus has all the characteristics of the genusYpsilonidium including reticulate-hypochnoid basidiomes, broad hyphae branching at right angles, broadly clavate basidia with two sterigmata, and basidiospores germinating by repetition. It differs from all hitherto known species in the genus by producing suballantoid to banana-shaped basidiospores, measuring 19.5–22×5.5–6 μm. Contribution No. 314 of the Tottori Mycological Institute.  相似文献   
9.
The environmental distribution of non-obligate orchid mycorrhizal (OM) symbionts belonging to the ‘rhizoctonia’ complex remains elusive. Some of these fungi, indeed, are undetectable in soil outside the host rhizosphere. A manipulation experiment was performed to assess the importance of neighbouring non-orchid plants and soil as possible reservoirs of OM fungi for Spiranthes spiralis, a widespread photosynthetic European terrestrial orchid species. Fungi of S. spiralis roots were identified by DNA metabarcoding before and 4 months after the removal of the surrounding vegetation and soil. Although such a treatment significantly affected fungal colonization of newly-formed orchid roots, most OM fungi were consistently associated with the host roots. Frequency patterns in differently aged roots suggest that these fungi colonize new orchid roots from either older roots or other parts of the same plant, which may thus represent an environmental source for the subsequent establishment of the OM symbiosis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号