首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  2017年   3篇
  2014年   4篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1988年   2篇
  1986年   1篇
  1978年   1篇
排序方式: 共有47条查询结果,搜索用时 953 毫秒
1.
Canalization describes the process by which phenotypic variation is reduced by developmental mechanisms. A trait can be canalized against environmental or genetic perturbations. Stabilizing selelction should favor improved canalization, and the degree of a trait's canalization should be positively correlated with its impact on fitness. Here we report, for Drosophila melanogaster, measurements of environmental canalization for five fitness components. We compare them with measurements of genetic canalization, and we discuss the impact of inbreeding on both. In three experiments we measured the variation of fitness components within lines nested within temperature, treatment, and experiment. Lines differed in the position of a P element insert or in genetic background. Within lines flies were genetically nearly identical. We designated trait variation within lines as environmental canalization. The canalization of the traits increased with their impact on fitness, and the pattern was similar to that found for the canalization of fitness components against genetic differences, measured as the variation among lines nested within temperature, treatment, and experiment. This suggests that developmental mechanisms buffer the phenotype against both genetic and environmental disturbance. The results also suggest, less strongly, that inbreeding weakens canalization.  相似文献   
2.
Canalization is an abstract term that describes unknown developmental mechanisms that reduce phenotypic variation. A trait can be canalized against environmental perturbations (e.g., changes in temperature or nutrient quality), or genetic perturbations (e.g., mutations or recombination); this paper is about genetic canalization. Stabilizing selection should improve the canalization of traits, and the degree of canalization should be positively correlated with the traits' impact on fitness. Experiments testing this idea should measure the canalization of a series of traits whose impact on fitness is known or can be inferred, exclude differences among traits in the number of loci and alleles segregating as an explanation for the pattern of variability found, and distinguish between canalization against genetic and environmental variation. These conditions were met by three experiments within which the variation of fitness components among Drosophila melanogaster lines was measured and among which the genetic contribution to the variation among lines was clearly different. The canalization of the traits increased with their impact on fitness and did not depend on the degree of genetic differences among lines. That the flies used had been transformed by a P-element insert suggests that canalization was also effective against novel genetic variation. The results reported here cannot be explained by the classical hypothesis of reduction in the number of loci segregating for traits with greater impact on fitness and confirm that traits with greater impact on fitness are more strongly canalized. This pattern of canalization reveals an underappreciated role for development in microevolution. There is differential genetic canalization of fitness components in D. melanogaster.  相似文献   
3.
Axons of the Til and Fe2 pioneer neurons in the legs of insect embryos possess separate and highly stereotyped proximal projections towards the CNS. However, quantitative analyses of deviations from the standard paths during the period of axon growth indicate that transient errors occur unexpectedly often. The distribution of legs with axons following deviant paths among the embryos analyzed is used to determine whether these errors are caused by random developmental noise or by non-random genetic or environmental factors. During the formation of the Til pathway all the errors are characterized by defasciculation of the 2 axons, occur with an average incidence of 7% and are statistically shown to be randomly caused. In comparison, during the formation of the Fe2 pathway the errors are characterized by both defasciculation and elongation in an inappropriate distal direction, occur with an incidence of 16%, and as revealed by statistical analyses, are caused by a non-random factor. Therefore, during pathfinding by these 2 pairs of axons there is a need for error-correcting mechanisms to insure the stereotypy of the final projections. These error-correcting mechanisms are suggested to have properties similar to those producing canalization as proposed by Waddington.  相似文献   
4.
Development in many phytophagous, holometabolous insects is flexible at the beginning but inflexible at the end of the last larval instar. A prominent feature of the inflexible period is a peak in hemolymph levels of ecdysteroids. We tested whether this pattern holds true for the final molt of a phytophagous, hemimetabolous insect, Romalea microptera (the Eastern lubber grasshopper). We fed one group of grasshoppers a high quantity diet (H) throughout the 5th (final) instar and a second group a low quantity diet (L) throughout the instar. Three other diet treatments involved starting the instar on the high diet and then abruptly switching to the low diet at 3, 8, or 13 days (H3L, H8L, and H13L respectively) and continuing the low diet until adult molt. Diet treatment did not affect the maximum hemolymph level of ecdysteroids (E(max)); this peak typically reached ~4000 ng/ml. Ecdysteroid levels were elevated for ~4 days in all groups. In contrast, diet significantly affected age at adult molt and age at E(max) such that H = H13L = H8L < H3L = L. We identified estimates of thresholds for weight gain (20% initial weight) and hemolymph ecdysteroids (100 ng/ml), after which diet did not affect the time to the adult molt. The weight gain threshold was less precise than the ecdysteroid threshold. These results suggest that R. microptera has an extended period of inflexible (canalized) development during the final instar that includes a peak of ecdysteroids. We hypothesize this pattern holds for many phytophagous, hemimetabolous insects.  相似文献   
5.
The evolution of genetic canalization under fluctuating selection   总被引:6,自引:0,他引:6  
Abstract.— If the direction of selection changes from generation to generation, the ability to respond to selection is maladaptive: the response to selection in one generation leads to reduced fitness in the next. Because the response is determined by the amount of genetic variance expressed at the phenotypic level, rapidly fluctuating selection should favor modifier genes that reduce the phenotypic effect of alleles segregating at structural loci underlying the trait. Such reduction in phenotypic expression of genetic variation has been named "genetic canalization." I support this argument with a series of two- and multilocus models with alternating linear selection and Gaussian selection with fluctuating optimum. A canalizing modifier gene affects the fitness of its carriers in three ways: (1) it reduces the phenotypic consequences of genetic response to previous selection; (2) it reduces the genetic response to selection, which is manifested as linkage disequilibrium between the modifier and structural loci; and (3) it reduces the phenotypic variance. The first two effects reduce fitness under directional selection sustained for several generations, but improve fitness when the direction of selection has just been reversed. The net effect tends to favor a canalizing modifier under rapidly fluctuating selection regimes (period of eight generations or less). The third effect improves fitness of the modifier allele if the fitness function is convex and reduces it if the function is concave. Under fluctuating Gaussian selection, the population is more likely to experience the concave portion of the fitness function when selection is stronger. Therefore, only weak to moderately strong fluctuating Gaussian selection favors genetic canalization. This paper considerably broadens the conditions that favor genetic canalization, which so far has only been postulated to evolve under long-term stabilizing selection.  相似文献   
6.
The effects of inbreeding on the phenotypic variance within populations were measured in a set of 30 bottlenecked lines derived from a single source population of Drosophila melanogaster. Inbred lines had significant variance among lines in the amount of phenotypic variance within lines, for thorax length, and sternopleural bristle scores. When significance levels were corrected on an experimentwide basis, no line had significant increases in phenotypic variance for sternopleural bristle counts, although two lines had significant increases in thorax length variance. These results demonstrate that inbred lines cannot be treated as necessarily more uniform than outbred lines and that results on changes in variance due to inbreeding should be treated with caution unless there has been sufficient replication. These results also demonstrate the validity of an important assumption of models of evolution by variance-mediated mechanisms, such as the variance-induced peak-shift model.  相似文献   
7.
Hybrids from crosses of different species have been reported to display decreased developmental stability when compared to their pure species, which is conventionally attributed to a breakdown of coadapted gene complexes. Drosophila subobscura and its close relative D. madeirensis were hybridized in the laboratory to test the hypothesis that genuine fluctuating asymmetry, measured as the within-individual variance between right and left wings that results from random perturbations in development, would significantly increase after interspecific hybridization. When sires of D. subobscura were mated to heterospecific females following a hybrid half-sib breeding design, F1 hybrid females showed a large bilateral asymmetry with a substantial proportion of individuals having an asymmetric index larger than 5% of total wing size. Such an anomaly, however, cannot be plainly explained by an increase of developmental instability in hybrids but is the result of some aberrant developmental processes. Our findings suggest that interspecific hybrids are as able as their parents to buffer developmental noise, notwithstanding the fact that their proper bilateral development can be harshly compromised. Together with the low correspondence between the co-variation structures of the interindividual genetic components and the within-individual ones from a Procrustes analysis, our data also suggest that the underlying processes that control (genetic) canalization and developmental stability do not share a common mechanism. We argue that the conventional account of decreased developmental stability in interspecific hybrids needs to be reappraised.  相似文献   
8.
The molecular chaperone protein Hsp90 has been widely discussed as a candidate gene for developmental buffering. We used the methods of geometric morphometrics to analyze its effects on the variation among individuals and fluctuating asymmetry of wing shape in Drosophila melanogaster. Three different experimental approaches were used to reduce Hsp90 activity. In the first experiment, developing larvae were reared in food containing a specific inhibitor of Hsp90, geldanamycin, but neither individual variation nor fluctuating asymmetry was altered. Two further experiments generated lines of genetically identical flies carrying mutations of Hsp83, the gene encoding the Hsp90 protein, in heterozygous condition in nine different genetic backgrounds. The first of these, introducing entire chromosomes carrying either of two Hsp83 mutations, did not increase shape variation or asymmetry over a wild-type control in any of the nine genetic backgrounds. In contrast, the third experiment, in which one of these Hsp83 alleles was introgressed into the wild-type background that served as the control, induced an increase in both individual variation and fluctuating asymmetry within each of the nine genetic backgrounds. No effect of Hsp90 on the difference among lines was detected, pro,iding no evidence for cryptic genetic variation of wing shape. Overall, these results suggest that Hsp90 contributes to, but is not controlling, the buffering of phenotypic variation in wing shape.  相似文献   
9.
The phenotypic effects of genetic and environmental manipulations have been rarely investigated simultaneously. In addition to phenotypic plasticity, their effect on the amount and directions of genetic and phenotypic variation is of particular evolutionary importance because these constitute the material for natural selection. Here, we used heterozygous insertional mutations of 16 genes involved in the formation of the Drosophila wing. The flies were raised at two developmental temperatures (18°C and 28°C). Landmark-based geometric morphometrics was used to analyze the variation of the wing size and shape at different hierarchical levels: among genotypes and temperatures; among individuals within group; and fluctuating asymmetry (FA). Our results show that (1) the phenotypic effects of the mutations depend on temperature; (2) reciprocally, most mutations affect wing plasticity; (3) both temperature and mutations modify the levels of FA and of among individuals variation within lines. Remarkably, the patterns of shape FA seem unaffected by temperature whereas those associated with individual variation are systematically altered. By modifying the direction of available phenotypic variation, temperature might thus directly affect the potential for further evolution. It suggests as well that the developmental processes responsible for developmental stability and environmental canalization might be partially distinct.  相似文献   
10.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号