首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   4篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   16篇
  2012年   15篇
  2011年   25篇
  2010年   16篇
  2009年   15篇
  2008年   20篇
  2007年   19篇
  2006年   15篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   12篇
  1996年   4篇
  1995年   5篇
  1994年   9篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
排序方式: 共有278条查询结果,搜索用时 17 毫秒
1.
Addition of calpain II (EC 3.4.22.17) to soluble proteins from 10-day-old rat lens caused an increase in turbidity and production of water-insoluble protein. The insolubilization increased with higher concentrations of both lens protein and calpain II, it could be prevented by the cysteine protease inhibitor E-64; it required at least 0.5 mM Ca2+, it was limited to 6% of the soluble protein present and resulted from precipitation β-crystallin polypeptides. When compared by two-dimensional electrophoresis, the insoluble β-crystallin polypeptides produced by calpain II were similar to insoluble β-crystallin polypeptides found incataractous lenses. Trypsin also caused insolubilization of β-crystallin polypeptides, but these polypeptides were unlike polypeptides produced during cataract formation. These data suggested that the loss of solubility was due to a specific removal of N/or C-terminal extensions from β-crystallin polypeptides by calpain II, and that a similar process may occur in vivo during cataract formation. It is hypothesized that the insoluble protein produced by calpain II causes cataract by increasing light scatter in the lens.  相似文献   
2.
Abstract: Rabbits were subjected to hypoxia (5% O2) for up to 90 min and allowed to recover for a maximum of 4 days. Hippocampus homogenate was assayed for fodrin breakdown product (BDP). After separation into a nuclear and mitochondrial fraction (NMF), a membrane and microsomal fraction (MMF), and a cytosolic fraction (CF), samples were assayed for μ-calpain, m-calpain, and calpastatin immunoreactivity. Calpain and calpastatin immunoreactivity decreased in the NMF and CF but increased in the MMF during hypoxia and short-term recovery. This translocation occurred in parallel with the increase in fodrin BDP. Because the increase in the MMF was not large enough to explain the decrease in the other two fractions, it was assumed that the translocation and activation was accompanied by a reduction in the total amounts of calpains and calpastatin. Glucocorticoid pretreatment (beta-methasone, 0.4 mg × kg−1× day−1) for 7 days produced a decrease in the ratio of activated μ-calpain in all three fractions in nearly all samples before, during, and after hypoxia, compared with untreated animals. Glucocorticoid pretreatment also prevented the increase in fodrin BDP that occurred in untreated animals during hypoxia and short-term recovery, indicating impairment of calpain activation.  相似文献   
3.
Abstract: The polymeric dye aurintricarboxylic acid (ATA) has been shown to protect various cell types from apoptotic cell death, reportedly through inhibition of a calcium-dependent endonuclease activity. Recent studies have indicated that there may be some commonalities among apoptosis, programmed cell death, and certain other forms of neuronal death. To begin to explore the possibility of common biochemical mechanisms underlying ischemia-or excitotoxin-induced neuronal death and apoptosis in vivo, gerbils or rats subjected to transient global ischemia or NMDA microinjection, respectively, received a simultaneous intracerebral infusion of ATA or vehicle. As a biochemical marker of neuronal death, spectrin proteolysis, which is mediated by activation of calpain I, was measured in hippocampus after 24 h. ATA treatment resulted in a profound reduction of both NMDA-and ischemia-induced spectrin proteolysis, consistent with the possibility of some common mechanism in apoptosis and other forms of neuronal death in vivo.  相似文献   
4.
Calpain, a calcium-activated neutral proteinase, is ubiquitously present in human tissues. To determine if lymphoid cells implicated in pathogenesis of demyelination may harbor calpain in a functionally active form, we determined both Calpain and mCalpain activities in human lymphoid cell lines. DEAE-cellulose and phenylsepharose column chromatography were used to isolate the enzyme from the natural inhibitor, calpastatin. Lymphocytic lines (CCRF-CEM, MOLT-3, MOLT-4, M.R.) showed predominance of Calpain (55–80%) whereas the monocytic line (U-937) showed prodominance of mCalpain (77%). Proportion and subcellular distribution of both isoforms varied among cell lines. Calpains isolated from U-937 cells degraded myelin basic protein. These results indicate that human lymphoid cells harbor functionally active calpain that can degrade myelin components in vitro. The study suggests a degradative role for calpain in demyelinating diseases.  相似文献   
5.
Abstract: Paired helical filaments (PHFs), a characteristic neuropathologic finding in Alzheimer's disease brain, are abnormal fibrillary forms of hyperphosphorylated tau (PHF-tau), which have been shown to be highly resistant to calpain digestion. Either excessive phosphorylation or fibrillary arrangement of tau proteins in PHFs may play a role in proteolytic resistance by limiting access to calpain recognition/digestion sites. To determine the contribution of the fibrillary conformation, isolated PHFs were subjected to treatment with either formic acid or guanidine. Both procedures effectively abolished the fibrillary structure of PHF but preserved PHF-tau immunoreactivity using a panel of antibodies that recognize nonphosphorylated and phosphorylated epitopes. These treatments also significantly increased the sensitivity of PHF-tau polypeptides to calpain proteolysis as shown by significant decreases in the half-life ( t 1/2) from the infinite with native PHF to 44 min and 4.4 min in formic acid- or guanidine-treated samples, respectively. In contrast, the sensitivity of normal fetal tau (3.4 min) was either decreased (5.9 min) or unaffected (3.6 min) by similar treatment. Our results indicate that after guanidine treatment, the sensitivity of PHF to calpain resembles that of fetal tau. These results strongly suggest that the fibrillary structure of PHF-tau, rather than hyperphosphorylation, is the major factor responsible for the resistance of abnormal filaments to calpain-mediated proteolysis.  相似文献   
6.
Abstract: Previous results have indicated that GluR1 subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors are targets of calpain. In the present study, we determined the effects of calpain treatment of synaptic membranes on GluR1 subunits using western blots with antibodies directed against the C-terminal (C-Ab) and the N-terminal (N-Ab) domains of the proteins, and compared them with the effects of calcium treatment of frozen-thawed brain sections. Calpain treatment of synaptic membranes resulted in a large decrease in the GluR1 band (105 kDa) labeled with C-Ab and in the formation of a doublet band labeled with N-Ab due to the appearance of a new species of GluR1 (98 kDa). These effects were blocked almost completely by calpain inhibitors. Calpain-induced changes in GluR1 immunological properties were not associated with modifications of [3H]AMPA or 6-cyano-7-[3H]nitroquinoxaline-2,3-dione ([3H]CNQX) binding. Treatment of frozen-thawed brain sections with concentrations of calcium as low as 0.2 m M resulted in a large decrease in the 105-kDa GluR1 band and in the concurrent appearance of the 98-kDa band. This treatment was associated with increased [3H]AMPA and [3H]CNQX binding. These results suggest that there exist several types/states of GluR1 subunits exhibiting different sensitivities to calpain. Our data also indicate the existence of additional calcium-dependent processes regulating the characteristics of receptors in intact tissues.  相似文献   
7.
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.  相似文献   
8.
The effects of cyclic AMP-dependent protein kinase (cAMP-PK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation on the binding of bovine tau to tubulin and calpain-mediated degradation of tau were studied. Both cAMP-PK and CaMKII readily phosphorylated tau and slowed the migration of tau on sodium dodecyl sulfate-containing polyacrylamide gels. However, cAMP-PK phosphorylated tau to a significantly greater extent than CaMKII (1.5 and 0.9 mol of 32P/mol of tau, respectively), and phosphorylation of tau by cAMP-PK resulted in a greater shift to a more acidic, less heterogeneous pattern on two-dimensional nonequilibrium pH gradient gels compared with CaMKII phosphorylation. Two-dimensional phosphopeptide maps indicate that cAMP-PK phosphorylates a site or sites on tau that are phosphorylated by CaMKII, as well as a unique site or sites that are not phosphorylated by CaMKII. Phosphorylation of tau by cAMP-PK significantly decreased tubulin binding and, as previously reported, also inhibited the calpain-induced degradation of tau. CaMKII phosphorylation of tau did not alter either of these parameters. These results suggest that the phosphorylation of site(s) on the tau molecule uniquely accessible to cAMP-PK contributed to the decreased tau-tubulin binding and increased resistance to calpain hydrolysis.  相似文献   
9.
The Wnt/β-catenin pathway controls developmental processes and homeostasis; however, abnormal activation of this pathway has been linked to several human diseases. Recent reports have demonstrated regulation of platelet function by canonical and non-canonical Wnt signalling. Platelet aggregation plays a crucial role in haemostasis and thrombosis. Here we report for the first time that, induction of sustained aggregation of platelets by a strong agonist in the presence of calcium was associated with nearly complete proteolysis of β-catenin, which was abrogated upon depletion of calcium from platelet suspension. β-catenin cleavage was disallowed in absence of aggregation, thus implicating integrin αIIbβ3 engagement in β-catenin proteolysis. Degradation of β-catenin was blocked partially by inhibitors of either proteasome or calpain and completely when cells were exposed to both the inhibitors. Protein kinase C inhibition, too, abolished β-catenin degradation. Thus activities of proteasome, calpain and protein kinase C regulate stabilization of β-catenin in aggregated human platelets.  相似文献   
10.
Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ∼52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号