首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   11篇
  国内免费   3篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
排序方式: 共有76条查询结果,搜索用时 109 毫秒
1.
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.  相似文献   
2.
目的:表达和纯化幽门螺杆菌不同菌株的CagA蛋白N端片段,检测其与磷脂酰丝氨酸(PS)的相互作用及亲和力。方法:用PCR方法从幽门螺杆菌3个菌株中扩增出CagA蛋白N端基因,并连接到表达载体pET-28a上;转化大肠杆菌BL21,经IPTG诱导可溶性表达CagA蛋白N端880残基片段;经镍柱亲和纯化后,利用PLOA法检测CagA蛋白与PS的相互作用。结果:构建了3种幽门螺杆菌菌株cagA基因的原核表达质粒pET-28a/cagAJ99、pET-28a/cagA11637及pET-28a/cagASS1,并在大肠杆菌中获得可溶性表达,SDS-PAGE和Western印迹证实得到目标融合蛋白,亲和纯化得到高纯度CagA蛋白。PLOA结果表明,CagA蛋白与PS有明显的相互作用。结论:3种幽门螺杆菌菌株CagA蛋白与PS之间存在相互作用,且不同的CagA与PS有不同的亲和力。  相似文献   
3.
Liu Z  Xu X  Chen L  Li W  Sun Y  Zeng J  Yu H  Chen C  Jia J 《Journal of cellular biochemistry》2012,113(3):1080-1086
Infection with CagA-positive Helicobacter pylori is the strongest risk factor for gastric carcinoma. Upon delivery into gastric epithelial cells, CagA disturbs cellular functions by physically interacting with and deregulating intracellular signaling molecules via both tyrosine phosphorylation-dependent and -independent mechanisms. Runx3 was suggested to be a tumor suppressor and closely associated with tumorigenesis and progression of gastric cancer. The aim of our study is to verify the effect of H. pylori virulence factor CagA on Runx3 expression level and investigate the corresponding molecular mechanisms and signaling pathways influencing Runx3 expression. Human gastric epithelial immortalized GES-1 cells were transfected with CagA-expression vector or control vector with FuGENE HD transfection reagent. Runx3 expression levels were determined by QRT-PCR and immunoblotting. Then we constructed a 1,150 bp Runx3 promoter luciferase reporter plasmid, pGL(3)-1150 bp, which was co-transfected into GES-1 cell with CagA-expression vector or control vector. Luciferase reporter assay was used to determine the effects of CagA on the 1,150 bp promoter activity of Runx3. Signal inhibitors were used to detect the signal pathway(s) through which CagA affects Runx3. Our results showed that CagA can reduce the expression level of Runx3 at both mRNA and protein levels significantly. Importantly, the 1,150 bp Runx3 promoter activity was decreased in cells transfected with CagA-expression vector comparing with cells transfected with control vector. And this inhibition is dependent on the phosphorylation of CagA. Signal pathways Src/MEK/ERK and p38 MAPK are involved in this regulation. Our findings provide new insights for understanding the mechanism of H. pylori carcinogenesis.  相似文献   
4.
Background and Aims: Helicobacter pylori is a highly diverse pathogen, which encounters epithelial cells as the initial defense barrier during its lifelong infection. The structure of epithelial cells can be disrupted through cleavage of microfilaments. Cytokeratin 18 (CK18) is an intermediate filament, the cleavage of which is considered an early event during apoptosis following activation of effector caspases. Methods: Helicobacter pylori strains were isolated from 76 dyspeptic patients. cagA 3’ variable region and CagA protein status were analyzed by PCR and western blotting, respectively. Eight hours post‐co‐culture of AGS cells with different H. pylori strains, flow cytometric analysis was performed using M30 monoclonal antibody specific to CK18 cleavage‐induced neo‐epitope. Results: Higher rates of CK18 cleavage were detected during co‐culture of AGS cells with H. pylori strains bearing greater numbers of cagA EPIYA‐C and multimerization (CM) motifs. On the other hand, H. pylori strains with greater numbers of EPIYA‐B relative to EPIYA‐C demonstrated a decrease in CK18 cleavage rate. Thus, H. pylori‐mediated cleavage of CK18 appeared proportional to the number of CagA EPIYA‐C and CM motifs, which seemed to be downplayed in the presence of EPIYA‐B motifs. Conclusions: Our observation associating the heterogeneity of cagA variants with the potential of H. pylori strains in the induction of CK18 cleavage as an early indication of apoptosis in gastric epithelial cells supports the fact that apoptosis may be a type‐specific trait. However, additional cagA‐targeted experiments are required to clearly identify the role of EPIYA and CM motifs in apoptosis and/or the responsible effector molecules.  相似文献   
5.
6.
7.
Background:  The expression of a fragile histidine triad (FHIT) protein is lost in stomach tumors. The study aimed at determining whether FHIT expression is affected by Helicobacter pylori infection, strain virulence ( vacA and cagA genes) and histopathological changes in the gastric mucosa of patients with functional dyspepsia having first-degree relatives with gastric cancer.
Materials and Methods:  Eighty-eight never-smoking patients with functional dyspepsia were selected for the study, and 48 of them had first-degree relatives with gastric cancer. Bacterial DNA amplification was used to identify H. pylori colonization. The level of FHIT gene expression was determined by qRT-PCR (mRNA) and Western blot (FHIT protein) analyses.
Results:  For patients having first-degree relatives with gastric cancer FHIT expression was lower (mRNA by ca. 40–45% and protein by 30%) compared with the control patients ( p  < .05). H. pylori infection decreased the FHIT mRNA level by 10–35% and the protein level by 10–20%. Bacterial strain vacA (+) cagA (+) lowered FHIT mRNA by ca. 30–35% in the antrum samples of both groups and in corpus samples of patients with first-degree relatives with gastric cancer ( p  < .05). The FHIT mRNA level was twice as high in control H. pylori- negative patients with intestinal metaplasia, compared with those with non-atrophic gastritis.
Conclusions:  The decreased FHIT gene expression associated with hereditary factors and with H. pylori infection, especially with vacA (+) cagA (+)-positive strains, may be related to gastric carcinoma development.  相似文献   
8.
Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically.  相似文献   
9.
万秀坤  刘纯杰 《微生物学报》2016,56(12):1821-1830
幽门螺杆菌感染是导致从胃炎到胃癌等一系列胃相关疾病的主要病因,但具体的致病机制仍不是很清楚。细胞毒素相关蛋白A(cytotoxin-associated gene A,Cag A)是幽门螺杆菌编码的一种重要毒力因子,且作为细菌来源的唯一癌蛋白被大量研究。Cag A蛋白是由幽门螺杆菌Ⅳ型分泌系统介导并注入宿主胃上皮细胞内,一旦进入细胞,Cag A能够与多个分子发生相互作用,扰乱细胞正常的信号通路,引起细胞病变和转化,而动物实验也证明了Cag A蛋白的致癌特点。本文重点对Cag A蛋白的序列特征,转位方式及致病机制等方面的最新进展进行了综述,希望能进一步阐释Cag A介导的幽门螺杆菌的致病机制,为以后的研究提供一定的方向和指导。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号