首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   1篇
  2011年   9篇
  2010年   6篇
  2009年   10篇
  2008年   12篇
  2007年   9篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   20篇
  1983年   22篇
  1982年   11篇
  1981年   23篇
  1980年   14篇
  1979年   23篇
  1978年   21篇
  1977年   20篇
  1976年   30篇
  1975年   26篇
  1974年   14篇
  1973年   17篇
  1972年   6篇
  1971年   3篇
排序方式: 共有366条查询结果,搜索用时 218 毫秒
1.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   
2.
3.
In neuroblastoma N1E 115 cells, carbachol, histamine and PGE1 elevated cyclic GMP content and, induced the efflux of preloaded 45Ca2+, the release of membrane-bound Ca2+ measured by fluorescent CTC, and the increase in [Ca2+]i as measured by Quin 2 fluorescence. The time course of the responses, the absolute requirement of extracellular Ca2+, the inhibition by receptor blockers, and the concentration dependency on histamine were all similar between these responses. The observation indicates that the mobilization of Ca2+, especially the increase of [Ca2+]i, may be intimately linked to the synthesis of cyclic GMP in the cells.  相似文献   
4.
H+-pumping adenosinetriphosphatases (ATPases, EC 3.6.1.3) were demonstrated in sealed microsomal vesicles of tobacco callus. Quinacrine fluorescence quenching was induced specifically by MgATP and stimulated by EGTA and Cl?. Fluorescence quenching reflected a relative measure of pH gradient formation (inside acid), as it could be reversed by gramicidin (an H+/cation conductor) or 10 mM NH4Cl (an uncoupler). H+ pumping was inhibited by tributyltin (an ATPase inhibitor) and sodium vanadate, but it was insensitive to oligomycin or fusicoccin. The vanadate concentration required to inhibit pH gradient formation was similar to that needed to inhibit KCl-stimulated Mg2+-ATPase activity and generation of a membrane potential (measured by ATP-dependent 35SCN? uptake). About 45% of all three activities (ATPase, pH gradient, membrane potential generation) were vanadate-insensitive, supporting the idea that non-mitochondrial membranes of plants have at least two types of electrogenic H+ pump.A vanadate-insensitive, H+-pumping ATPase previously shown by methylamine accumulation was characterized to be anion-sensitive and possibly enriched in vacuolar membranes (Churchill, K.A. and Sze, H. (1983) Plant Physiol. 71, 610–617). Yet, pH gradient formation determined by quinacrine fluorescence quenching was decreased by monovalent cations with a sequence K+, Rb+, Na+ > Cs+,Li+> choline, bisTris-propane. Since K+ stimulated ATPase activity more than Bistris-propane, K+ appeared to collapse formation of the pH gradient by an H+/K+ countertransport. The sensitivity to vanadate and K+ provides evidence that the plasma-membrane ATPase is an electrogenic H+ pump.  相似文献   
5.
The mechanism by which bipyridine and phenanthroline types of iron chelator inhibit iron uptake from transferrin and iron efflux mediated by pyridoxal isonicotinoyl hydrazone was investigated using rabbit reticulocytes with the aim of providing more information on the normal process of iron uptake by developing erythroid cells. It was shown that the chelators block cellular uptake by chelating the iron immediately after release from transferrin while it is still in the membrane fraction of the cells. The iron-chelator is then released from the cells by a process which is very similar to that of transferrin release with respect to kinetics and sensitivity to incubation temperature and the effects of metabolic inhibitors and other chemical reagents. These results are compatible with the conclusion that both transferrin and the iron-chelators in the cells are mainly present in endocytotic vesicles and are released from the cells by exocytosis. The chelators were also shown to block the pyridoxal isonicotinoyl hydrazone-mediated efflux of iron from cells which had taken up iron in the presence of isoniazid, an inhibitor of haem synthesis, by chelating the iron in the cytosol and the mitochondria. In this case, the iron-chelator complexes were not released from the cells. Measurement of the diethyl ether/water partition coefficients of bipyridine and 1,10-phenanthroline and their iron complexes gave much higher values for the free chelators, supporting the concept that the chelators trap the iron intracellularly because of differences in the lipid solubility and, hence, membrane permeability to the free chelators and their iron complexes.  相似文献   
6.
N,N′-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstitued mitochondrial cytochrome b-c1 complex. DCCD inhibits equally electron flow and proton translocation (i.e., the H+e? ratio is not affected) catalysed by the enzyme reconstituted into phospholipid vesicles. The inhibitory effects are accompanied by structural alterations in the polypeptide pattern of both isolated and reconstituted enzyme. Cross-linking was observed between subunits V (iron-sulfur protein) and VII, indicating that these polypeptides are in close proximity. A clear correlation was found between the kinetics of inhibition of enzymic activity and the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C]DCCD was also observed, to all subunits with the isolated enzyme and preferentially to cytochrome b with the reconstituted vesicles; in both cases, however, it was not correlated kinetically with the inhibition of the enzymic activity.  相似文献   
7.
Three distinct states can be identified for cells of the green alga Chlorella vulgaris; State 1 and State 2 obtained by preillumination in far-red and red light, respectively, and the dark state obtained by dark-adaptation. Addition of the inhibitor DCMU to algal cells leads to an initial rapid increase in chlorophyll-a fluorescence reflecting the closure of Photosystem II traps. This, in the case of dark and state-2-adapted algae is followed by a slow light-dependent increase to a fluorescence yield typical of State-1-adapted cells. Measurements of low temperature (77 K) emission spectra indicate that the low fluorescence yields of dark and State-2-adapted algae reflect similar balances in excitation-energy distribution between the two photosystems. In both cases, the balance favours PS I and the slow fluorescence increase seen in the poisoned algae reflects a redressing of this balance in favour of PS II. The low fluorescence yield of State-2-adapted algae is thought to be associated with the phosphorylation of chlorophyll a/b light-harvesting protein (Biochim. Biophys. Acta (1983) 724, 94–103). Measurements of the uncoupler and ATPase sensitivity of the light-dependent increases seen in DCMU-poisoned cells indicate that the low fluorescence yield of dark-adapted algae is of different origin. Evidence is presented showing that the light-driven changes in excitation-energy distribution seen in green algae involve two distinct processes; a low-intensity, wavelenght-independent change reflecting simple light/dark changes and a higher intensity, wavelength-dependent change reflecting State 1/State 2 adaptation. The former changes appear to be associated with changes in the local ionic environment within the algal chloroplast, whilst the latter appear to reflect changes in the phosphorylation state of chlorophyll a/b light-harvesting protein.  相似文献   
8.
Electron transport, phosphorylation and internal proton concentration were measured in illuminated spinach chloroplast thylakoid membranes under a number of conditions. Regardless of the procedure used to vary these parameters, the data fit a simple chemiosmotic model. Protons from Photosystem II did not appear to be utilized differently from those derived from Photosystem I. The maximal phosphorylation efficiency (Pe2) for photophosphorylation in washed thylakoids under oxidizing conditions is likely to be 43. This value is consistent with a proton-to-electron-pair ratio of 4 for electron flow through both photosystems and a proton-to-ATP ratio of 3 for the chloroplast proton-ATPase.  相似文献   
9.
A. Vermeglio  P. Joliot 《BBA》1984,764(2):226-232
Absorption changes, following a series of actinic flashes, linked to oxidoreduction states of ubiquinone, cytochrome ct together with the carotenoid bandshift, have been measured for intact cells of Rhodopseudomonas sphaeroides under aerobic conditions. Binary oscillations are observed for these different contributions: (1) about one molecule of ubisemiquinone and fully reduced quinone are formed on odd and even flashes, respectively; (2) cytochrome ct re-reduction is faster (t12 ≈ 50 ms) after an even number of flashes than after an odd number; (t12 ≈ 100 ms); (3) a slow-rising phase (t12 ≈ 5 ms, antimycin A-insensitive) of the carotenoid bandshift is observed after each even flash. These results are compared to the respiratory activity of the cells under flash excitation and discussed in relation to a model, in which respiratory and photosynthetic electron chains interact at the level of cytochrome c2 and where the terminal oxidase is supposed to have electrogenic properties.  相似文献   
10.
In the presence of Cl?, the severity of ammonia-induced inhibition of photosynthetic oxygen evolution is attenuated in spinach thylakoid membranes (Sandusky, P.O. and Yocum, C.F. (1983) FEBS Lett. 162, 339–343). A further examination of this phenomenon using steady-state kinetic analysis suggests that there are two sites of ammonia attack, only one of which is protected by the presence of Cl?. In the case of Tris-induced inhibition of oxygen evolution only the Cl? protected site is evident. In both cases the mechanism of Cl? protection involves the binding of Cl? in competition with the inhibitory amine. Anions (Br? and NO?3) known to reactive oxygen evolution in Cl?-depleted membranes also protect against Tris-induced inhibition, and reactivation of Cl?-depleted membranes by Cl? is competitively inhibited by ammonia. Inactivation of the oxygen-evolving complex by NH2OH is impeded by Cl?, whereas Cl? does not affect the inhibition induced by so-called ADRY reagents. We propose that Cl? functions in the oxygen-evolving complex as a ligand bridging manganese atoms to mediate electron transfer. This model accounts both for the well known Cl? requirement of oxygen evolution, and for the inhibitory effects of amines on this reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号