首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  2024年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   12篇
  2012年   3篇
  2011年   9篇
  2010年   7篇
  2009年   12篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1989年   1篇
  1985年   1篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
Ezrin, radixin and moesin (ERM) proteins are more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Recent reviews extensively discuss their biological functions 1, 2, 3 and 4. In this review, we will first remind the main features of this family of proteins, which are known as linkers and regulators of plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.  相似文献   
3.
4.
The biomimetic catalytic oxidation of 3,5-di-tert-butylcatechol by the dicopper(II) complex of the ligand ,-bis{bis[1-(1-methyl-2-benzimidazolyl)methyl]amino}-m-xylene in the presence of dioxygen has been investigated as a function of temperature and pH in a mixed aqueous/organic solvent. The catalytic cycle occurs in two steps, the first step being faster than the second step. In the first step, one molecule of catechol is oxidized by the dicopper(II) complex, and the copper(II) centers are reduced. From the pH dependence, it is deduced that the active species of the process is the monohydroxo form of the dinuclear complex. In the second step, the second molecule of catechol is oxidized by the dicopper(I)-dioxygen complex formed upon oxygenation of the reduced complex. In both cases, catechol oxidation is an inner-sphere electron transfer process involving binding of the catechol to the active species. The binary catechol-dicopper(II) complex formed in the first step could be characterized at very low temperature (–90 °C), where substrate oxidation is blocked. On the contrary, the ternary complex of dicopper(I)-O2-catechol relevant to the second step does not accumulate in solution and could not be characterized, even at low temperature. The investigation of the biphasic kinetics of the catalytic reaction over a range of temperatures allowed the thermodynamic (H° and S°) and activation parameters (H and S) connected with the key steps of the catecholase process to be obtained.  相似文献   
5.
An electron-rich iron(III) porphyrin complex (meso-tetramesitylporphinato)iron(III) chloride [Fe(TMP)Cl], was found to catalyze the epoxidation of olefins by aqueous 30% H2O2 when the reaction was carried out in the presence of 5-chloro-1-methylimidazole (5-Cl-1-MeIm) in aprotic solvent. Epoxides were the predominant products with trace amounts of allylic oxidation products, indicating that Fenton-type oxidation reactions were not involved in the olefin epoxidation reactions. cis-Stilbene was stereospecifically oxidized to cis-stilbene oxide without giving isomerized trans-stilbene oxide product, demonstrating that neither hydroperoxy radical (HOO·) nor oxoiron(IV) porphyrin [(TMP)FeIV=O] was responsible for the olefin epoxidations. We also found that the reactivities of other iron(III) porphyrin complexes such as (meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride [Fe(TDCPP)Cl], (meso-tetrakis(2,6-difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and (meso-tetrakis(pentafluorophenyl)porphinato)iron(III) chloride [Fe(TPFPP)Cl] were significantly affected by the presence of the imidazole in the epoxidation of olefins by H2O2. These iron porphyrin complexes did not yield cyclohexene oxide in the epoxidation of cyclohexene by H2O2 in the absence of 5-Cl-1-MeIm in aprotic solvent; however, addition of 5-Cl-1-MeIm to the reaction solutions gave high yields of cyclohexene oxide with the formation of trace amounts of allylic oxidation products. We proposed, on the basis of the results of mechanistic studies, that the role of the imidazole is to decelerate the O–O bond cleavage of an iron(III) hydroperoxide porphyrin (or H2O2–iron(III) porphyrin adduct) and that the intermediate transfers its oxygen to olefins prior to the O–O bond cleavage.  相似文献   
6.
3D in vitro models have been used in cancer research as a compromise between 2-dimensional cultures of isolated cancer cells and the manufactured complexity of xenografts of human cancers in immunocompromised animal hosts. 3D models can be tailored to be biomimetic and accurately recapitulate the native in vivo scenario in which they are found. These 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Approaches to create more biomimetic 3D models of cancer include, but are not limited to, (i) providing the appropriate matrix components in a 3D configuration found in vivo, (ii) co-culturing cancer cells, endothelial cells and other associated cells in a spatially relevant manner, (iii) monitoring and controlling hypoxia- to mimic levels found in native tumours and (iv) monitoring the release of angiogenic factors by cancer cells in response to hypoxia. This article aims to overview current 3D in vitro models of cancer and review strategies employed by researchers to tackle these aspects with special reference to recent promising developments, as well as the current limitations of 2D cultures and in vivo models. 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Here we review current strategies in the field of modelling cancer, with special reference to advances in complex 3D in vitro models.  相似文献   
7.
8.
Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age‐related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self‐assemble into fibers. The fine control and tuning of all these features, linked to the absence of non‐collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects.  相似文献   
9.
Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successfully perform Michaelis–Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called “Chemzymes”, based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well as chemzymes that catalyze conjugate additions, cycloadditions, and self-replicating processes. The focus will be mainly on cyclodextrin-based chemzymes since they have shown to be good candidate structures to base an enzyme model skeleton on. In addition hereto, other molecules that encompass binding properties will also be presented.  相似文献   
10.
Cell constructs and culture systems are essential components of tissue engineering. Cell constructs are usually composed of a dense population of cells, for which long-term culture is required in vitro. However, the denser construct suffers from the absence of passive nutrient supply, gas exchange, and removal of degraded debris. We have developed a novel hydrostatic pressure/perfusion (HP/P) culture system that improves the quality of neo-tissues, providing an automated affordable system for clinical applications. We evaluated the effects of HP/P on cellularity, viability, and proliferation of human dermal fibroblasts seeded in a gel/sponge construct. HP/P and perfusion promoted cell migration and significantly increased proliferation and DNA content after 4 days culture compared to the static culture. HP/P culture is beneficial for building a denser three-dimensional fibroblast construct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号